[en] Heat shock treatment induces expression of several heat shock proteins and subsequent post-ischemic myocardial protection. Correlations exist between the degree of stress used to induce the heat shock proteins, the amount of the inducible heat shock protein 70 (HSP70) and the level of myocardial protection. The inducible HSP70 has also been shown to be protective in transfected myogenic cells. Here we examined the role of human inducible HSP70 in transgenic mouse hearts. Overexpression of the human HSP70 does not appear to affect normal protein synthesis or the stress response in transgenic mice compared with nontransgenic mice. After 30 min of ischemia, upon reperfusion, transgenic hearts versus nontransgenic hearts showed significantly improved recovery of contractile force (0.35 +/- 0.08 versus 0.16 +/- 0.05 g, respectively, P < 0.05), rate of contraction, and rate of relaxation. Creatine kinase, an indicator of cellular injury, was released at a high level (67.7 +/- 23.0 U/ml) upon reperfusion from nontransgenic hearts, but not transgenic hearts (1.6 +/- 0.8 U/ml). We conclude that high level constitutive expression of the human inducible HSP70 plays a direct role in the protection of the myocardium from ischemia and reperfusion injury.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Chien, K. R. 1993. Molecular advances in cardiovascular biology. Science (Wash. DC). 260:916-917.
Mulligan, R. C. 1993. The basic science of gene therapy. Science (Wash. DC). 260:926-931.
Zhu, N., D. Liggit, Y. Liu, and R. Debs. 1993. Systemic gene expression after intravenous DNA delivery into adult mice. Science (Wash. DC). 261:209-211.
Yang, G., P. H. Chan, J. Chen, E. Carlson, S. F. Chen, P. Weinstein, C. J. Epstein, and H. Kamii. 1994. Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke. 25:165-170.
MacMillan, V., D. Judge, A. Wiseman, D. Settles, J. Swain, and J. Davis. 1993. Mice expressing a bovine basic fibroblast growth factor transgene in the brain show increased resistance to hypoxemic-ischemic cerebral damage. Stroke. 24:1735-1739.
Milano, C. A., L. F. Allen, H. A. Rockman, P. C. Dolber, T. R. McMinn, K. R. Chien, T. D. Johnson, R. A. Bond, and R. J. Lef kowitz. 1994. Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor. Science (Wash. DC). 264:582-586.
Mitchell, H. K., G. Moller, N. S. Petersen, and L. Lipps-Sarmento. 1979. Specific protection from phenocopy induction by heat shock. Dev. Genet. 1:181-192.
Li, G. C., and Z. Werb. 1982. Correlation between the synthesis of heat shock proteins and the development of thermotolerance in Chinese hamster fibroblasts. Proc. Natl. Acad. Sci. USA. 79:3918-3922.
Landry, J., and P. Chrétien. 1983. Relationship between hyperthermia induced heat shock proteins and thermotolerance in Morris hepatoma cells. Can. J. Biochem. 61:428-437.
Currie, R. W., M. Karmazyn, M. Kloc, and K. Mailer. 1988. Heat-shock response is associated with enhanced post-ischemic ventricular recovery. Circ. Res. 63:543-549.
Karmazyn, M., K. Mailer, and R. W. Currie. 1990. Acquisition and decay of heat-shock-enhanced post-ischemic ventricular recovery. Am. J. Physiol. 259:H424-H431.
Yellon, D. M., E. Pasini, A. Cargnoni, M. S. Marber, D. S. Latchman, and R. Ferrari. 1992. The protective role of heat stress in the ischaemic and reperfused rabbit myocardium. J. Mol. Cell. Cardiol. 24:342-346.
Donnelly, T. J., R. E. Sievers, F. L. J. Vissern, W. J. Welch, and C. L. Wolfe. 1992. Heat shock protein induction in rat hearts. A role for improved myocardial salvage after ischemia and reperfusion? Circulation. 85:769-778.
Currie, R. W., R. M. Tanguay, and J. G. Kingma, Jr. 1993. Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation. 87:963-971.
Marber, M. S., D. S. Latchman, J. M. Walker, and D. M. Yellon. 1993. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation. 88:1264-1272.
Hutter, M. M., R. E. Sievers, V. Barbosa, and C. L. Wolfe. 1994. Heat-shock protein induction in rat hearts: a direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection. Circulation. 89:355-360.
Angelidis, C. E., I. Lazaridis, and G. N. Pagoulatos. 1991. Constitutive expression of heat-shock protein 70 in mammalian cells confers thermotolerance. Eur. J. Biochem. 199:35-39.
Li, G. C., L. G. Li, Y. K. Liu, J. Y. Mak, L. L. Chen, and W. M. Lee. 1991. Thermal response of rat fibroblasts stably transfected with the human 70-kDa heat shock protein-encoding gene. Proc. Natl. Acad. Sci. USA. 88:1681-1685.
Hogan, B., F. Constantini, and E. Lacey. 1986. Manipulating the Mouse Embryo. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 332 pp.
Brinster, R. L., H. Y. Chen, M. E. Trumbauer, M. K. Yagle, and R. D. Palmiter. 1985. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc. Natl. Acad. Sci. USA. 82:4438-4442.
Kollias, G., N. Wrington, J. Hurst, and F. Grosveld. 1986. Regulated expression of human Aγ-, β-, and hybrid γβ-globin genes in transgenic mice: manipulation of the developmental expression patterns. Cell. 46:89-94.
Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503-517.
Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156-159.
Hunt, C., and R. I. Morimoto. 1985. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc. Natl. Acad. Sci. USA. 82:6455-6459.
Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499-560.
O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007-4021.
Currie, R. W. 1986. Synthesis of stress-induced protein in isolated and perfused rat hearts. Biochem. Cell. Biol. 64:418-426.
Towbin, H., T. Staeheln, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 76:4350-4354.
Johnson, D. A., J. W. Gautsch, J. R. Sportsman, and J. H. Elder. 1984. Improved technique utilizing nonfat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Anal. Tech. 1:3-8.
Rosalki, S. B. 1967. An improved procedure for serum creatine phosphokinase determination. J. Lab. Clin. Med. 69:696-705.
Beers, R. F., and I. W. Sizer. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195:133-140.
Cohen, G., D. Dembiec, and J. Marcus. 1970. Measurement of catalase activity in tissue extracts. Anal. Biochem. 34:30-38.
Lowry, O. H., M. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biochem. 193:265-272.
Discroll, M. 1992. Molecular genetics of cell death in the nematode Caenorhabditis elegans. J. Neurobiol. 23:1327-1351.
Gagliardini, V., P.-A. Fernandez, R. K. K. Lee, H. C. A. Drexler, R. J. Rotello, M. C. Fishman, and J. Yuan. 1994. Prevention of vertebrate neuronal death by the c rmA gene. Science (Wash. DC). 263:826-828.
Morimoto, R. I. 1993. Cells in stress: transcriptional activation of heat shock genes. Science (Wash. DC). 259:1409-1410.
Mestril, R., S.-H. Chi, M. R. Sayen, K. O'Reilly, and W. H. Dillman. 1994. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against stimulated ischemia-induced injury. J. Clin. Invest. 93:759-767.
Williams, R. S., J. A. Thomas, M. Fina, Z. German, and I. J. Benjamin. 1993. Human heat shock protein 70 (hsp70) protects murine cells from injury during metabolic stress. J. Clin. Invest. 92:503-508.
Yellon, D. M., E. Pasini, A. Cargnoni, M. S. Marber, D. S. Latchman, and R. Ferrari. 1992. The protective role of heat stress in the ischaemic an reperfused rabbit myocardium. J. Mol. Cell. Cardiol. 24:895-907.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.