[en] Members of the heat shock factor (HSF) family are evolutionarily conserved regulators that share a highly homologous DNA-binding domain. In mammals, HSF1 is the main factor controlling the stress-inducible expression of Hsp genes while the functions of HSF2 and HSF4 are less clear. Based on its developmental profile of expression, it was hypothesized that HSF2 may play an essential role in brain and heart development, spermatogenesis, and erythroid differentiation. To directly assess this hypothesis and better understand the underlying mechanisms that require HSF2, we generated Hsf2 knockout mice. Here, we report that Hsf2(-/-) mice are viable and fertile and exhibit normal life span and behavioral functions. We conclude that HSF2, most probably because its physiological roles are integrated into a redundant network of gene regulation and function, is dispensable for normal development, fertility, and postnatal psychomotor function.
McMillan, D Randy; University of Texas Southwestern Medical Center at Dallas > Internal Medicine and Pediatrics
Christians, Elisabeth; University of Texas Southwestern Medical Center at Dallas > Internal Medicine
Forster, Michael; University of Noth Texas Health Science Center at Fort Worth > Pharmacology
Xiao, XianZhong; University of Texas Southwestern Medical Center at Dallas > Internal Medicine
Connell, Patrice; Univesity of Texas Southwestern Medical Center at Dallas > Internal Medicine
Plumier, Jean-Christophe ; Massachusetts General Hospital and Harvard Medical School > Neuroscience Center > Stroke and Neurovascular Regulation
Zuo, XiaoXia; university of Texas Southwestern Medical Center at Dallas > Internal Medicine
Richardson, James; University of Texas Southwestern Medical Center at Dallas > Pathology
Morgan, Sylvia; University of Texas Southwestern Medical Center at Dallas > Internal Medicine
Benjamin, Ivor J; University of Texas Southwestern Medical Center at Dallas and University of North Texas Health Science Center at Fort Worth > Internal Medicine and Pharmacology
Language :
English
Title :
Heat shock transcription factor 2 is not essential for embryonic development, fertility, or adult cognitive and psychomotor function in mice.
Publication date :
2002
Journal title :
Molecular and Cellular Biology
ISSN :
0270-7306
eISSN :
1098-5549
Publisher :
American Society for Microbiology (ASM), Washington, United States - District of Columbia
Alastalo, T. P., M. Lonnstrom, S. Leppa, K. Kaarniranta, M. Pelto-Huikko, L. Sistonen, and M. Parvinen. 1998. Stage-specific expression and cellular localization of the heat shock factor 2 isoforms in the rat seminiferous epithelium. Exp. Cell. Res. 240:16-27.
Benjamin, I. J., B. Kroger, and R. S. Williams. 1990. Activation of the heat shock transcription factor by hypoxia in mammalian cells. Proc. Natl. Acad. Sci. USA 87:6263-6267.
Brown, I. R., and S. J. Rush. 1999. Cellular localization of the heat shock transcription factors HSF1 and HSF2 in the rat brain during postnatal development and following hyperthermia. Brain Res. 821:333-340.
Christians, E., A. A. Davis, S. T. Thomas, and I. J. Benjamin. 2000. Maternal effect of Hsf1 on reproductive success. Nature 407:693-694.
Christians, E., E. Michel, P. Adenot, V. Mezger, M. Rallu, M. Morange, and J.-P. Renard. 1997. Evidence for the involvement of mouse heat shock factor 1 in the atypical expression of the HSP70.1 heat shock gene during mouse zygotic genome activation. Mol. Cell. Biol. 17:778-788.
Dix, D. J., J. W. Allen, B. W. Collins, C. Mori, N. Nakamura, P. Poorman-Allen, E. H. Goulding, and E. M. Reddy. 1996. Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc. Natl. Acad. Sci. USA 93:3264-3268.
Dix, D. J., M. Rosario-Herrle, H. Gotoh, C. Mori, E. H. Goulding, C. V. Barrett, and E. M. Eddy. 1996. Developmentally regulated expression of Hsp70-2 and a Hsp70-2/lacZ transgene during spermatogenesis. Dev. Biol. 174:310-321.
Du, X. J., T. J. Cole, N. Tenis, X. M. Gao, F. Kontgen, B. E. Kemp, and J. Heierhorst. 2002. Impaired cardiac contractility response to hemodynamic stress in S100A1-deficient mice. Mol. Cell. Biol. 22:2821-2829.
Eriksson, M., E. Jokinen, L. Sistonen, and S. Leppa. 2000. Heat shock factor 2 is activated during mouse heart development. Int. J. Dev. Biol. 44:471-477.
Fenteany, G., R. F. Standaert, W. S. Lane, S. Choi, E. J. Corey, and S. L. Schreiber. 1995. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268:726-731.
Fiorenza, M. T., T. Farkas, M. Dissing, D. Kolding, and V. Zimarino. 1995. Complex expression of murine heat shock transcription factors. Nucleic Acids Res. 23:467-474.
Forster, M. J., A. Dubey, K. M. Dawson, W. A. Stutts, H. Lal, and R. S. Sohal. 1996, Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc. Natl. Acad. Sci. USA 93:4765-4769.
Forster, M. J., and H. Lal. 1991. Neurobehavioral biomarkers of aging: Influence of genotype and dietary restriction. Biomed. Environ. Sci. 4:144-165.
Forster, M. J., and H. Lal. 1992. Within-subject behavioral analysis of recent memory in aging mice. Behav. Pharmacol. 3:337-349.
Goodson, M. L., O. K. Park-Sarge, and K. D. Sarge. 1995. Tissue-dependent expression of heat shock factor 2 isoforms with distinct transcriptional activities. Mol. Cell. Biol. 15:5288-5293.
Jedlicka, P., M. A. Mortin, and C. Wu. 1997. Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J. 16:2452-2462.
Kallio, M., Y. Chang, M. Manuel, T. Alastalo, M. Rallu, Y. Gitton, L. Pirkkala, M. Loones, L. Paslaru, S. Larney, S. Hiard, M. Morange, L. Sistonen, and V. Mezger, 2002. Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J. 21: 2591-2601.
Kawazoe, Y., A. Nakai, M. Tanabe, and K. Nagata. 1998. Proteasome inhibition leads to the activation of all members of the heat-shock-factor family. Eur. J. Biochem. 255:356-362.
Kim, D., S. H. Kim, and G. C. Li. 1999. Proteasome inhibitors MG132 and lactacystin hyperphosphorylate HSF1 and induce hsp70 and hsp27 expression. Biochem. Biophys. Res. Commun. 254:264-268.
Kroeger, P. E., and R. I. Morimoto. 1994. Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Mol. Cell. Biol. 14:7592-7603.
Kroeger, P. E., K. D. Sarge, and R. I. Morimoto. 1993. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Mol. Cell. Biol. 13:3370-3383.
Manuel, M., J. Sage, M. G. Mattei, M. Morange, and V. Mezger. 1999. Genomic structure and chromosomal localization of the mouse Hsf2 gene and promoter sequences. Gene 232:115-124.
Mathew, A., S. K. Mathur, C. Jolly, S. G. Fox, S. Kim, and R. I. Morimoto. 2001. Stress-specific activation and repression of heat shock factors 1 and 2. Mol. Cell. Biol. 21:7163-7171.
Mathew, A., S. K. Mathur, and R. I. Morimoto. 1998. Heat shock response and protein degradation: Regulation of HSF2 by the ubiquitin-proteasome pathway. Mol. Cell. Biol. 18:5091-5098.
McMillan, D. R., X. Xiao, L. Shao, K. Graves, and I. J. Benjamin. 1998. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J. Biol. Chem. 273:7523-7528.
Mezger, V., M. Rallu, R. I. Morimoto, M. Morange, and J. P. Renard. 1994. Heat shock factor 2-like activity in mouse blastocysts. Dev. Biol. 166:819-822.
Min, J. N., M. Y. Han, S. S. Lee, K. J. Kim, and Y. M. Park. 2000. Regulation of rat heat shock factor 2 expression during the early organogenic phase of embryogenesis. Biochim. Biophys. Acta 1494:256-262.
Montagutelli, X. 2000. Effect of the genetic background on the phenotype of mouse mutations. J. Am. Soc. Nephrol. 11(Suppl. 16):S101-S105.
Morano, K. A., and D. J. Thiele. 1999. Heat shock factor function and regulation in response to cellular stress, growth, and differentiation signals. Gene Expr. 7:271-282.
Morimoto, R. I. 1998. Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12:3788-3796.
Nakai, A., and R. I. Morimoto. 1993. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell. Biol. 13:1983-1997.
Nakai, A., M. Tanabe, Y. Kawazoe, J. Inazawa, R. I. Morimoto, and K. Nagata. 1997. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell. Biol. 17:469-481.
Pirkkala, L., T. P. Alastalo, X. Zuo, I. J. Benjamin, and L. Sistonen. 2000. Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol. Cell. Biol. 20:2670-2675.
Pirkkala, L., P. Nykanen, and L. Sistonen. 2001. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15:1118-1131.
Pritts, T. A., E. S. Hungness, D. D. Hershko, B. W. Robb, X. Sun, G. J. Luo, J. E. Fischer, H. R. Wong, and P. O. Hasselgren. 2002. Proteasome inhibitors induce heat shock response and increase IL-6 expression in human intestinal epithelial cells. Am. J. Physiol. Endocrinol. Metab. 282:R101-R1026.
Rallu, M., M. Loones, Y. Lallemand, R. Morimoto, M. Morange, and V. Mezger. 1997. Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc. Natl. Acad. Sci. USA 94:2392-2397.
Rosario, M. O., S. L. Perkins, D. A. O'Brien, R. L. Allen, and E. M. Eddy. 1992. Identification of the gene for the developmentally expressed 70 kDa heat-shock protein (P70) of mouse spermatogenic cells. Dev. Biol. 150:1-11.
Sarge, K. D., O. K. Park-Sarge, J. D. Kirby, K. E. Mayo, and R. I. Morimoto. 1994. Expression of heat shock factor 2 in mouse testis: Potential role as a regulator of heat-shock protein gene expression during spermatogenesis. Biol. Reprod. 50:1334-1343.
Sarge, K. D., V. Zimarino, K. Holm, C. Wu, and R. I. Morimoto. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability, Genes Dev. 5:1902-1911.
Schuetz, T. J., G. J. Gallo, L. Sheldon, P. Tempst, and R. E. Kingston. 1991. Isolation of a cDNA for HSF2: Evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 88:6911-6915.
Sistonen, L., K. D. Sarge, and R. I. Morimoto. 1994. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol. Cell. Biol. 14:2087-2099.
Sistonen, L., K. D. Sarge, B. Phillips, K. Abravaya, and R. I. Morimoto. 1992. Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol. Cell Biol. 12:4104-4111.
Soriano, P., C. Montgomery, R. Geske, and A. Bradley. 1991. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693-702.
Stacchiotti, A., R. Rezzani, L. Rodella, L. Tiberio, L. Schiaffonati, and R. Bianchi. 1999. Cell-specific expression of heat shock transcription factors 1 and 2 in unstressed rat spinal cord. Neurosci. Lett. 268:73-76.
Tanemura, K., M. Kurohmaru, K. Kuramoto, and Y. Hayashi. 1993. Age-related morphological changes in the testis of the BDF1 mouse. J. Vet. Med. Sci. 55:703-710.
Xiao, X., X. Zuo, A. A. Davis, D. R. McMillan, B. B. Curry, J. A. Richardson, and I. J. Benjamin. 1999. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 18:5943-5952.
Yoshima, T., T. Yura, and H. Yanagi. 1998. Heat shock factor 1 mediates hemin-induced hsp70 gene transcription in K562 erythroleukemia cells. J. Biol. Chem. 273:25466-25471.
Zhu, Z., and N. F. Mivechi. 1999. Regulatory domain of human heat shock transcription factor-2 is not regulated by hemin or heat shock. J. Cell. Biochem. 73:56-69.