Article (Scientific journals)
A full-discontinuous Galerkin formulation of non-linear Kirchhoff-Love shells: elasto-plastic finite deformations, parallel computation & fracture applications
Becker, Gauthier; Noels, Ludovic
2013In International Journal for Numerical Methods in Engineering, 93 (1), p. 80-117
Peer Reviewed verified by ORBi
 

Files


Full Text
2012_IJNME_FRACSHELL.pdf
Author postprint (13.12 MB)
Download
Annexes
2012_ESMC_Shells.pdf
Publisher postprint (26.13 MB)
ESCM 2012
Download
blast.avi
Publisher postprint (2.41 MB)
blasted cylinder
Download
pipeBlastStress.avi
Publisher postprint (5.19 MB)
blasted pipe
Download
pipeCrack.avi
Publisher postprint (1.96 MB)
blasted pipe
Download
ring.avi
Publisher postprint (1.33 MB)
fragmented ring
Download

This is the submitted version of the paper "A full-discontinuous Galerkin formulation of non-linear Kirchhoff-Love shells: elasto-plastic finite deformations, parallel computation & fracture applications, International Journal for Numerical Methods in Engineering VOL, PAGE, 10.1002/nme.4381" which has been published in final form on URL


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Finite element methods; Fracture; Discontinuous Galerkin; Shells; Plasticity; Extrinsic Cohesive Law
Abstract :
[en] Due to its ability to take into account discontinuities, the discontinuous Galerkin (DG) method presents some advantages for modeling crack initiations and propagations. This concept has been recently applied to 3D simulations and to elastic thin bodies. In this last case, the assumption of small elastic deformations before crack initiations or propagations reduces drastically the applicability of the framework to a reduced number of materials. To remove this limitation, a full-DG formulation of non-linear Kirchhoff-Love shells is presented and is used in combination with an elasto-plastic finite deformations model. The results obtained by this new formulation are in agreement with other continuum elasto-plastic shell formulations. Then this full-DG formulation of Kirchhoff-Love shells is coupled with the cohesive zone model to perform thin body fracture simulations. As this method allows considering elasto-plastic constitutive laws in combination with the cohesive model, accurate results compared to the experiments are found. In particular, the crack path and propagation rate of a blasted cylinder are shown to match experimental results. One of the main advantages of this framework is its ability to run in parallel with a high speed-up factor, allowing the simulation of ultra fine meshes.
Research Center/Unit :
Computational & Multiscale Mechanics of Materials
Disciplines :
Mechanical engineering
Materials science & engineering
Author, co-author :
Becker, Gauthier ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
A full-discontinuous Galerkin formulation of non-linear Kirchhoff-Love shells: elasto-plastic finite deformations, parallel computation & fracture applications
Publication date :
January 2013
Journal title :
International Journal for Numerical Methods in Engineering
ISSN :
0029-5981
eISSN :
1097-0207
Publisher :
Wiley, Chichester, United Kingdom
Volume :
93
Issue :
1
Pages :
80-117
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Available on ORBi :
since 13 May 2012

Statistics


Number of views
278 (68 by ULiège)
Number of downloads
765 (32 by ULiège)

Scopus citations®
 
35
Scopus citations®
without self-citations
25
OpenCitations
 
31
OpenAlex citations
 
38

Bibliography


Similar publications



Contact ORBi