This is the submitted version of the paper "A full-discontinuous Galerkin formulation of non-linear Kirchhoff-Love shells: elasto-plastic finite deformations, parallel computation & fracture applications, International Journal for Numerical Methods in Engineering VOL, PAGE, 10.1002/nme.4381" which has been published in final form on URL
All documents in ORBi are protected by a user license.
Finite element methods; Fracture; Discontinuous Galerkin; Shells; Plasticity; Extrinsic Cohesive Law
Abstract :
[en] Due to its ability to take into account discontinuities, the discontinuous Galerkin (DG) method presents some advantages for modeling crack initiations and propagations. This concept has been recently applied to 3D simulations and to elastic thin bodies. In this last case, the assumption of small elastic deformations before crack initiations or propagations reduces drastically the applicability of the framework to a reduced number of materials.
To remove this limitation, a full-DG formulation of non-linear Kirchhoff-Love shells is presented and is used in combination with an elasto-plastic finite deformations model. The results obtained by this new formulation are in agreement with other continuum elasto-plastic shell formulations.
Then this full-DG formulation of Kirchhoff-Love shells is coupled with the cohesive zone model to
perform thin body fracture simulations. As this method allows considering elasto-plastic constitutive laws in combination with the cohesive model, accurate results compared to the experiments are found. In particular, the crack path and propagation rate of a blasted cylinder are shown to match experimental results. One of the main advantages of this framework is its ability to run in parallel with a high speed-up factor, allowing the simulation of ultra fine meshes.
Hillerborg A, Modéer M, Petersson PE.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 1976; 6(6):773-781. DOI: 10.1016/0008-8846(76)90007-7.
Dugdale DS.Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids May 1960; 8(2):100-104.
Barenblatt G.The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Elsevier: New York, 1962. pages 55-129.
Needleman A.A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics 1987; 54:525-531.
Tvergaard V.Effect of fibre debonding in a whisker-reinforced metal. Materials Science and Engineering: A 1990; 125(2):203-213. DOI: 10.1016/0921-5093(90)90170-8.
Needleman A.An analysis of decohesion along an imperfect interface. International Journal of Fracture 1990; 42:21-40.
Needleman A.An analysis of tensile decohesion along an interface. Journal of the Mechanics and Physics of Solids 1990; 38(3):289-324. DOI: 10.1016/0022-5096(90)90001-K.
Tvergaard V, Hutchinson JW.The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. Journal of the Mechanics and Physics of Solids 1992; 40(6):1377-1397. DOI: 10.1016/0022-5096(92)90020-3.
Tvergaard V, Hutchinson JW.The influence of plasticity on mixed mode interface toughness. Journal of the Mechanics and Physics of Solids 1993; 41(6):1119-1135. DOI: 10.1016/0022-5096(93)90057-M.
Scheider I, Brocks W.Simulation of cup-cone fracture using the cohesive model. Engineering Fracture Mechanics 2003; 70(14):1943-1961.
Tvergaard V, Hutchinson JW.Effect of strain-dependent cohesive zone model on predictions of crack growth resistance. International Journal of Solids and Structures 1996; 33(20-22):3297-3308.
Klein PA, Foulk JW, Chen EP, Wimmer SA, Gao HJ.Physics-based modeling of brittle fracture: cohesive formulations and the application of meshfree methods. Theoretical and Applied Fracture Mechanics Dec 2001; 37(1-3):99-166.
Seagraves A, Radovitzky R.Advances in cohesive zone modeling of dynamic fracture. In Dynamic Failure of Materials and Structures, Shukla A, Ravichandran G, Rajapakse YD (eds). Springer US: New York, 2010; 349-405.
Camacho GT, Ortiz M.Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures 1996; 33(20-22):2899-2938.
Pandolfi A, Krysl P, Ortiz M.Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. International Journal of Fracture 1999; 95(1):279-297.
Ortiz M, Ortiz M, Pandolfi A.Finite-deformation irreversible cohesive elements for three-dimensional crack propagation analysis. International Journal for Numerical Methods in Engineering 2000; 44:44-1267.
Cirak F, Deiterding R, Mauch SP.Large-scale fluid-structure interaction simulation of viscoplastic and fracturing thin-shells subjected to shocks and detonations. Computers & Structures 2007; 85(11-14):1049-1065.
Cirak F, Ortiz M, Pandolfi A.A cohesive approach to thin-shell fracture and fragmentation. Computer Methods in Applied Mechanics and Engineering 2005; 194(21-24):2604-2618.
Becker G, Geuzaine C, Noels L.A one field full discontinuous Galerkin method for Kirchhoff-Love shells applied to fracture mechanics. Computer Methods in Applied Mechanics and Engineering 2011; 200:3223-3241. DOI: 10.1016/j.cma.2011.07.008.
Cocburn B.Discontinuous Galerkin methods for convection-dominated problems. In High-Order Methods for Computational Physics, Vol. 11, Lecture Notes in Computational Sciences and Engineering. Springer: Berlin, 1999.
Cockburn B.Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift far Angewandte Mathematik und Mechanik 2003; 83(11):731-754. DOI: 10.1002/zamm.200310088.
Arnold DN, Brezzi F, Cockburn B, Marini LD.Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis 2002; 39(5):1749-1779.
Hansbo P, Larson MG.A discontinuous Galerkin method for the plate equation. Calcolo 2002; 39(1):41-59.
Lew A, Neff P, Sulsky D, Ortiz M.Optimal bv estimates for a discontinuous Galerkin method for linear elasticity. Applied Mathematics Research Express 2004; 2004(3):73-106.
Celiker F, Cockburn B, Stolarski HK.Locking-free optimal discontinuous Galerkin methods for Timoshenko beams. SIAM Journal on Numerical Analysis 2006; 44(6):2297-2325.
Guzey S, Stolarski HK, Cockburn B, Tamma KK.Design and development of a discontinuous Galerkin method for shells. Computer Methods in Applied Mechanics and Engineering 2006; 195(25-28):3528-3548.
Eyck AT, Lew A.Discontinuous Galerkin methods for non-linear elasticity. International Journal for Numerical Methods in Engineering 2006; 67(9):1204-1243.
Güzey S, Cockburn B, Stolarski HK.The embedded discontinuous Galerkin method: application to linear shell problems. International Journal for Numerical Methods in Engineering 2007; 70(7):757-790.
Wells GN, Dung NT.A c0 discontinuous Galerkin formulation for kirchhoff plates. Computer Methods in Applied Mechanics and Engineering 2007; 196(35-36):3370-3380.
Lew A, Eyck A, Rangarajan R.Some applications of discontinuous Galerkin methods in solid mechanics. IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media 2008; 11:227-236.
Eyck AT, Celiker F, Lew A.Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: motivation, formulation, and numerical examples. Computer Methods in Applied Mechanics and Engineering Aug 2008; 197(45-48):3605-3622.
Noels L, Radovitzky R.An explicit discontinuous Galerkin method for non-linear solid dynamics: formulation, parallel implementation and scalability properties. International Journal for Numerical Methods in Engineering 2008; 74(9):1393-1420.
Noels L, Radovitzky R.A new discontinuous Galerkin method for Kirchhoff-Love shells. Computer Methods in Applied Mechanics and Engineering 2008; 197(33-40):2901-2929.
Noels L.A discontinuous Galerkin formulation of non-linear Kirchhoff-Love shells. International Journal for Numerical Methods in Engineering 2009; 78(3):296-323.
Shen Y, Lew A.An optimally convergent discontinuous Galerkin-based extended finite element method for fracture mechanics. International Journal for Numerical Methods in Engineering 2010; 82(6):716-755.
Engel G, Garikipati K, Hughes TJR, Larson MG, Mazzei L, Taylor RL.Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Computer Methods in Applied Mechanics and Engineering Jul 2002; 191(34):3669-3750.
Wells GN, Garikipati K, Molari L.A discontinuous Galerkin formulation for a strain gradient-dependent damage model. Computer Methods in Applied Mechanics and Engineering 2004; 193(33-35):3633-3645. DOI:10.1016/j.cma.2004.01.020.
Molari L, Wells GN, Garikipati K, Ubertini F.A discontinuous Galerkin method for strain gradient-dependent damage: study of interpolations and convergence. Computer Methods in Applied Mechanics and Engineering 2006; 195(13-16):1480-1498. DOI: 10.1016/j.cma.2005.05.026. A Tribute to Thomas J.R. Hughes on the Occasion of his 60th Birthday.
Becker G, Noels L.A fracture framework for euler-bernoulli beams based on a full discontinuous Galerkin formulation/extrinsic cohesive law combination. International Journal for Numerical Methods in Engineering 2011; 85(10):1227-1251. DOI: 10.1002/nme.3008.
Mergheim J, Kuhl E, Steinmann P.A hybrid discontinuous Galerkin/interface method for the computational modelling of failure. Communications in Numerical Methods in Engineering 2004; 20(7):511-519.
Prechtel M, Ronda P, Janisch R, Hartmaier A, Leugering G, Steinmann P, Stingl M.Simulation of fracture in heterogeneous elastic materials with cohesive zone models. International Journal of Fracture 2011; 168:15-29. DOI: 10.1007/s10704-010-9552-z.
Radovitzky R, Seagraves A, Tupek M, Noels L.A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method. Computer Methods in Applied Mechanics and Engineering 2011; 200:326-344. DOI: 10.1016/j.cma.2010.08.014.
Larsson R, Mediavilla J, Fagerstrm M.Dynamic fracture modeling in shell structures based on XFEM. International Journal for Numerical Methods in Engineering 2011; 86(4-5):499-527. DOI: 10.1002/nme.3086.
Simo JC, Fox DD.On stress resultant geometrically exact shell model. Part i: formulation and optimal parametrization. Computer Methods in Applied Mechanics and Engineering 1989; 72(3):267-304.
Simo JC, Fox DD, Rifai MS.On a stress resultant geometrically exact shell model. Part ii: the linear theory; computational aspects. Computer Methods in Applied Mechanics and Engineering 1989; 73(1):53-92.
Simo JC, Fox DD, Rifai MS.On a stress resultant geometrically exact shell model. Part iii: computational aspects of the nonlinear theory. Computer Methods in Applied Mechanics and Engineering 1990; 79(1):21-70. DOI: 10.1016/0045-7825(90)90094-3.
Simo JC, Rifai MS, Fox DD.On a stress resultant geometrically exact shell model. Part iv: variable thickness shells with through-the-thickness stretching. Computer Methods in Applied Mechanics and Engineering 1990; 81(1):91-126. DOI: 10.1016/0045-7825(90)90143-A.
Simo J, Kennedy J.On a stress resultant geometrically exact shell model. Part v. nonlinear plasticity: formulation and integration algorithms. Computer Methods in Applied Mechanics and Engineering 1992; 96(2):133-171. DOI: 10.1016/0045-7825(92)90129-8.
Cirak F, Ortiz M, Schrder P.Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. International Journal for Numerical Methods in Engineering 2000; 47(12):2039-2072. DOI: 10.1002/(SICI)1097-0207(20000430)47:12h2039::AID-NME872i3.0.CO;2-1.
Cirak F, Ortiz M.Fully c1-conforming subdivision elements for finite deformation thin-shell analysis. International Journal for Numerical Methods in Engineering 2001; 51(7):813-833. DOI: 10.1002/nme.182.
Deiterding R, Radovitzky R, Mauch S, Noels L, Cummings J, Meiron D.A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading. Engineering with Computers 2006; 22(3):325-347.
Cuitino A, Ortiz M.A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics. Engineering Computations 1992; 9:437-451.
Areias PMA, Belytschko T.Non-linear analysis of shells with arbitrary evolving cracks using XFEM. International Journal for Numerical Methods in Engineering 2005; 62(3):384-415. DOI: 10.1002/nme.1192.
Areias PMA, Song JH, Belytschko T.Analysis of fracture in thin shells by overlapping paired elements. Computer Methods in Applied Mechanics and Engineering 2006; 195(41-43):5343-5360.
Song J-H, Belytschko T.Dynamic fracture of shells subjected to impulsive loads. Journal of Applied Mechanics 2009; 76(5):051301. DOI: 10.1115/1.3129711.
Zavattieri PD.Modeling of crack propagation in thin-walled structures. Mecanica Computacional 2004; XXIII: 209-228.
Zavattieri PD.Modeling of crack propagation in thin-walled structures using a cohesive model for shell elements. Journal of Applied Mechanics Nov 2006; 73(6):948-958.
Corigliano A, Cacchione F, Frangi A, Zerbini S.Numerical modelling of impact rupture in polysilicon microsystems. Computational Mechanics 2008; 42:251-259. DOI: 10.1007/s00466-007-0231-5.
Molinari JF, Gazonas G, Raghupathy R, Rusinek A, Zhou F.The cohesive element approach to dynamic fragmentation: the question of energy convergence. International Journal for Numerical Methods in Engineering 2007; 69(3):484-503.
Li H, Chandra N.Analysis of crack growth and crack-tip plasticity in ductile materials using cohesive zone models. International Journal of Plasticity 2003; 19(6):849-882.
Pandolfi A, Ortiz M.An efficient adaptive procedure for three-dimensional fragmentation simulations. Engineering with Computers Aug 2002; 18(2):148-159.
Papoulia KD, Sam CH, Vavasis SA.Time continuity in cohesive finite element modeling. International Journal for Numerical Methods in Engineering 2003; 58(5):679-701.
Zhang ZJ, Paulino GH, Celes W.Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials. International Journal for Numerical Methods in Engineering 2007; 72(8):893-923.
Geuzaine C, Remacle JF.Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 2009; 79(11):1309-1331.
Hulbert GM, Chung J.Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Computer Methods in Applied Mechanics and Engineering 1996; 137(2):175-188. DOI: 10.1016/S0045-7825(96)01036-5.
Karypis G, Kumar V.A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing 1998; 20(1):359-392.
Balay S, Brown J, Buschelman K, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H.PETSc Web page, 2011.
Basar Y, Ding Y.Finite-rotation shell elements for the analysis of finite-rotation shell problems. International Journal for Numerical Methods in Engineering 1992; 34(1):165-169. DOI: 10.1002/nme.1620340109.
Buechter N, Ramm E.Shell theory versus degeneration-a comparison in large rotation finite element analysis. International Journal for Numerical Methods in Engineering 1992; 34(1):39-59. DOI: 10.1002/nme.1620340105.
Sansour C, Bocko J.On hybrid stress, hybrid strain and enhanced strain finite element formulations for a geometrically exact shell theory with drilling degrees of freedom. International Journal for Numerical Methods in Engineering 1998; 43(1):175-192. DOI: 10.1002/(SICI)1097-0207(19980915)43:1h175::AID-NME448i3.0.CO;2-9.
Sansour C, Kollmann FG.Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assesment of hybrid stress, hybrid strain and enhanced strain elements. Computational Mechanics 2000; 24:435-447. DOI: 10.1007/s004660050003.
Areias PMA, Song JH, Belytschko T.A finite-strain quadrilateral shell element based on discrete Kirchhoff-Love constraints. International Journal for Numerical Methods in Engineering 2005; 64(9):1166-1206. DOI: 10.1002/nme.1389.
Belytschko T, Lin JI, Chen-Shyh T.Explicit algorithms for the nonlinear dynamics of shells. Computer Methods in Applied Mechanics and Engineering 1984; 42(2):225-251. DOI: 10.1016/0045-7825(84)90026-4.
Swaddiwudhipong S, Liu ZS.Dynamic response of large strain elasto-plastic plate and shell structures. Thin-Walled Structures 1996; 26(4):223-239. DOI: 10.1016/0263-8231(96)00031-6.
Betsch P, Stein E.Numerical implementation of multiplicative elasto-plasticity into assumed strain elements with application to shells at large strains. Computer Methods in Applied Mechanics and Engineering 1999; 179(3-4):215-245. DOI: 10.1016/S0045-7825(99)00063-8.
Belytschko T, Wong BL, Plaskacz EJ.Fission-fusion adaptivity in finite elements for nonlinear dynamics of shells. Computers & Structures 1989; 33(5):1307-1323. DOI: 10.1016/0045-7949(89)90468-9.
Zhou F, Molinari JF.Stochastic fracture of ceramics under dynamic tensile loading. International Journal of Solids and Structures 2004; 41(22-23):6573-6596. DOI: 10.1016/j.ijsolstr.2004.05.029.
Papadrakakis M.A method for the automatic evaluation of the dynamic relaxation parameters. Computer Methods in Applied Mechanics and Engineering 1981; 25(1):35-48. DOI: 10.1016/0045-7825(81)90066-9.
Rice J. In Mathematical Analysis in the Mechanics of Fracture, Vol. 2, Liebotwitz H (ed.). Academic Press: New York, 1968
Chao TW, Shepherd JE.Fracture response of externally flawed aluminum cylindrical shells under internal gaseous detonation loading. International Journal of Fracture 2005; 134:59-90. DOI: 10.1007/s10704-005-5462-x.
Oakley DR, Knight NF.Adaptive dynamic relaxation algorithm for non-linear hyperelastic structures part i. formulation. Computer Methods in Applied Mechanics and Engineering 1995; 126(1-2):67-89. DOI: 10.1016/0045-7825(95)00805-B.
Zhang LC, Kadkhodayan M, Mai YW.Development of the MADR method. Computers & Structures 1994; 52(1):1-8. DOI: 10.1016/0045-7949(94)90249-6.