[en] We investigated the expression and functional properties of slow skeletal troponin T(sTnT) isoforms in rat skeletal muscles. Four sTnT cDNAs were cloned from the slow soleus muscle. Three isoforms were found to be similar to sTnT1, sTnT2, and sTnT3 isoforms described in mouse muscles. A new rat isoform, with a molecular weight slightly higher than that of sTnT3, was discovered. This fourth isoform had never been detected previously in any skeletal muscle and was therefore called sTnTx. From both expression pattern and functional measurements, it appears that sTnT isoforms can be separated into two classes, high-molecular-weight ( sTnT1, sTnT2) and low-molecular-weight ( sTnTx, sTnT3) isoforms. By comparison to the apparent migration pattern of the four recombinant sTnT isoforms, the newly described low-molecular-weight sTnTx isoform appeared predominantly and typically expressed in fast skeletal muscles, whereas the higher-molecular-weight isoforms were more abundant in slow soleus muscle. The relative proportion of the sTnT isoforms in the soleus was not modified after exposure to hindlimb unloading (HU), known to induce a functional atrophy and a slow-to-fast isoform transition of several myofibrillar proteins. Functional data gathered from replacement of endogenous troponin complexes in skinned muscle fibers showed that the sTnT isoforms modified the Ca2+ activation characteristics of single skeletal muscle fibers, with sTnT2 and sTnT1 conferring a similar increase in Ca2+ affinity higher than that caused by low-molecular-weight isoforms sTnTx and sTnT3. Thus we show for the first time the presence of sTnT in fast muscle fibers, and our data show that the changes in neuromuscular activity on HU are insufficient to alter the sTnT expression pattern.
Kischel, Philippe ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Labo de recherche sur les métastases
Bastide, Bruno; Université des Sciences et Technologies de Lille - USTL > Institut Fédératif de Recherches 118 > Laboratoire de Plasticité Neuromusculaire
Muller, Marc ; Université de Liège - ULiège > Département des sciences de la vie > Biologie et génétique moléculaire
Dubail, Fabien; Université de Liège - ULiège
Offredi, Fabrice; Université de Liège - ULiège > Biologie et génétique moléculaire
Mounier, Yvonne; Université des Sciences et Technologies de Lille - USTL > Institut Fédératif de Recherches 118 > Laboratoire de Plasticité Neuromusculaire
Martial, Joseph ; Université de Liège - ULiège > Département des sciences de la vie > Biologie et génétique moléculaire
Language :
English
Title :
Expression and functional properties of four slow skeletal troponin T isoforms in rat muscles
Publication date :
August 2005
Journal title :
American Journal of Physiology - Cell Physiology
ISSN :
0363-6143
eISSN :
1522-1563
Publisher :
Amer Physiological Soc, Bethesda, United States - Maryland
Volume :
289
Issue :
2
Pages :
C437-C443
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
MICADO
Funders :
DGTRE - Région wallonne. Direction générale des Technologies, de la Recherche et de l'Énergie
Bandman E. Contractile protein isoforms in muscle development. Dev Biol 154: 273-283, 1992.
Bastide B, Kischel P, Puterflam J, Stevens L, Pette D, Jin JP, and Mounier Y. Expression and functional implications of troponin T isoforms in soleus muscle fibers of rat after unloading. Pflügers Arch 444: 345-352, 2002.
Blewett C and Elder GC. Quantitative EMG analysis in soleus and plantons during hindlimb suspension and recovery. J Appl Physlol 74: 2057-2066, 1993.
Brandt PW, Cox RN, Kawai M, and Robinson T. Effect of cross-bridge kinetics on apparent Ca2+ sensitivity. J Gen Physiol 79: 997-1016, 1982.
Breitbart RE and Nadal-Ginard B. Complete nucleotide sequence of the fast skeletal troponin T gene. Alternatively spliced exons exhibit unusual interspecies divergence. J Mol Biol 188: 313-324, 1986.
Breitbart RE, Nguyen HT, Medford RM, Destree AT, Mahdavi V, and Nadal-Ginard B. Intricate combinatorial patterns of exon splicing generate multiple regulated troponin T isoforms from a single gene. Cell 41: 67-82, 1985.
Cooper TA and Ordahl CP. A single troponin T gene regulated by different programs in cardiac and skeletal muscle development. Science 226: 979-982, 1984.
Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol 157: 378-417, 1988.
Fitts RH, Riley DR, and Widrick JJ. Microgravity and skeletal muscle. J Appl Physiol 89: 823-839, 2000.
Gahlmann R, Troutt AB, Wade RP, Gunning P, and Kedes L. Alternative splicing generates variants in important functional domains of human slow skeletal troponin T. J Biol Chem 262: 16122-16126, 1987.
Gomes AV, Guzman G, Zhao J, and Potter JD. Cardiac troponin T isoforms affect the Ca2+ sensitivity and inhibition of force development. Insights into the role of troponin T isoforms in the heart. J Biol Chem 277: 35341-35349, 2002.
Gomes AV and Potter JD. Molecular and cellular aspects of troponin cardiomyopathies. Ann NY Acad Sci 1015: 214-224, 2004.
Hartner KT, Kirschbaum BJ, and Pette D. The multiplicity of troponin T isoforms. Distribution in normal rabbit muscles and effects of chronic stimulation. Eur J Biochem 179: 31-38, 1989.
Huang QQ, Chen A, and Jin JP. Genomic sequence and structural organization of mouse slow skeletal muscle troponin T gene. Gene 229: 1-10, 1999.
Jin JP, Chen A, and Huang QQ. Three alternatively spliced mouse slow skeletal muscle troponin T isoforms: conserved primary structure and regulated expression during postnatal development. Gene 214: 121-129, 1998.
Kischel P, Bastide B, Potter JD, and Mounier Y. The role of the Ca 2+ regulatory sites of skeletal troponin C in modulating muscle fibre reactivity to the Ca2+ sensitizer bepridil. Br J Pharmacol 131: 1496-1502, 2000.
Kischel P, Stevens L, and Mounier Y. Differential effects of bepridil on functional properties of troponin C in slow and fast skeletal muscles. Br J Pharmacol 128: 767-773, 1999.
Krishan K, Morgan MJ, Zhao W, and Dhoot GK. Slow troponin T mRNA in striated muscles is expressed in both cell type and developmental stage specific manner. J Muscle Res Cell Motil 21: 527-536, 2000.
Kruger M, Pfitzer G, and Stehle R. Expression and purification of human cardiac troponin subunits and their functional incorporation into isolated cardiac mouse myofibrils. J Chromatogr B Analyt Technol Biomed Life Sci 786: 287-296, 2003.
Malnic B, Farah CS, and Reinach FC. Regulatory properties of the NH 2- and COOH-terminal domains of troponin T. ATPase activation and binding to troponin I and troponin C. J Biol Chem 273: 10594-10601, 1998.
Maytum R, Geeves MA, and Lehrer SS. A modulatory role for the troponin T tail domain in thin filament regulation. J Biol Chem 277: 29774-29780, 2002.
Morey ER. Space flight and bone turnover: correlation with a new model of weightlessness. Bioscience 29: 168-172, 1979.
Moss RL, Swinford AE, and Greaser ML. Alterations in the Ca2+ sensitivity of tension development by single skeletal muscle fibers at stretched lengths. Biophys J 43: 115-119, 1983.
Orentlicher M, Brandt PW, and Reuben JP. Regulation of tension in skinned muscle fibers: effect of high concentrations of Mg-ATP. Am J Physiol Cell Physiol 233: C127-C134, 1977.
Pette D and Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50: 500-509, 2000.
Reiser PJ, Greaser ML, and Moss RL. Developmental changes in troponin T isoform expression and tension production in chicken single skeletal muscle fibres. J Physiol 449: 573-588, 1992.
Sabry MA and Dhoot GK. Identification of and pattern of transitions of cardiac, adult slow and slow skeletal muscle-like embryonic isoforms of troponin T in developing rat and human skeletal muscles. J Muscle Res Cell Motil 12: 262-270, 1991.
Samson F, Mesnard L, Mihovilovic M, Potter TG, Mercadier JJ, Roses AD, and Gilbert JR. A new human slow skeletal troponin T (TnTs) mRNA isofonn derived from alternative splicing of a single gene. Biochem Biophys Res Commun 199: 841-847, 1994.
Schachat FH, Diamond MS, and Brandt PW. Effect of different troponin T-tropomyosin combinations on thin filament activation. J Mol Biol 198: 551-554, 1987.
Stevens L, Bastide B, Kischel P, Pette D, and Mounier Y. Time-dependent changes in expression of troponin subunit isoforms in unloaded rat soleus muscle. Am J Physiol Cell Physiol 282: C1025-C1030, 2002.
Tobacman LS, Nihli M, Butters C, Heller M, Hatch V, Craig R, Lehman W, and Homsher E. The troponin tail domain promotes a conformational state of the thin filament that suppresses myosin activity. J Biol Chem 277: 27636-27642, 2002.
Toursel T, Bastide B, Stevens L, Rieger F, and Mounier Y. Alterations in contractile properties and expression of myofibrillar proteins in wobbler mouse muscles. Exp Neurol 162: 311-320, 2000.
Yonemura I, Hirabayashi T, and Miyazaki J. Heterogeneity of chicken slow skeletal muscle troponin T mRNA. J Exp Zool 286: 149-156, 2000.