[en] A 2D numerical flow model, developed at the Research unit of Hydrology, Applied Hydrodynamics and Hydraulic Constructions at ULg, has been applied to flows in a macro-rough channel. The model solves the shallow water equations (SWE) with a two length scale, depth-integrated k-type approach for turbulence modeling. Data for the comparison have been provided by experiments conducted at the Laboratory of Hydraulic Constructions at EPFL. In the experiments with different non-prismatic channel configurations, namely large-scale cavities at the side walls, three different 2D flow characteristics could be observed in cavities. With the used numerical model features, especially regarding turbulence and friction modeling, a single set of bottom and side wall roughness could be found for a large range of discharges investigated in a prismatic channel. For the macro rough configurations, the numerical model gives an excellent agreement between experimental and numerical results regarding backwater curves and flow patterns if the side wall cavities have low aspect ratios. For configurations with high aspect ratios, the head loss generated by the preservation of important recirculation gyres in the cavities is slightly underestimated. The results of the computations reveal clearly that the separation of turbulence sources in the mathematical model is of great importance. Indeed, the turbulence related to 2D transverse shear effects and the 3D turbulence, generated by bed friction, can have very different amplitude. When separating these two effects in the numerical models, most of the flow features observed experimentally can be reproduced accurately.
Research Center/Unit :
Aquapôle - ULiège
Disciplines :
Civil engineering
Author, co-author :
Erpicum, Sébastien ; Université de Liège - ULiège > Département Argenco : Secteur MS2F > Hydraulique génér., const. hydraul. et méc. des fluides
Meile, Tobias; Ecole Polytechnique Fédérale de Lausanne - EPFL > ENAC - ICARE > Laboratoire de Constructions Hydrauliques - LCH
Dewals, Benjamin ; Université de Liège - ULiège > Département Argenco : Secteur MS2F > Hydrodynamique appl. et constructions hydrauliques (HACH)
Pirotton, Michel ; Université de Liège - ULiège > Département Argenco : Secteur MS2F > Hydrodynamique appl. et constructions hydrauliques (HACH)
Schleiss, Anton .J; Ecole Polytechnique Fédérale de Lausanne - EPFL > ENAC - ICARE > Laboratoire de Constructions Hydrauliques - LCH
Language :
English
Title :
2D numerical flow modeling in a macro-rough channel
Alternative titles :
[fr] Modélisation numérique 2D des écoulements dans un canal macro-rugueux
Publication date :
December 2009
Journal title :
International Journal for Numerical Methods in Fluids
ISSN :
0271-2091
eISSN :
1097-0363
Publisher :
John Wiley & Sons LTD, Chichester, United Kingdom
Volume :
61
Issue :
11
Pages :
1227-1246
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Swiss Federal Office for the Environment (FOEN) F.R.S.-FNRS - Fonds de la Recherche Scientifique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Dewals BJ. Une approche unifiée pour la modélisation d'écoulements à surface libre, de leur effet érosif sur une structure et de leur interaction avec divers constituants. Ph.D. Thesis, Unité d'Hydrodynamique Appliquée et des Constructions Hydrauliques, Université de Liége, Liége, 2006; 636.
Erpicum S. Optimisation objective de paramétres en écoulements turbulents à surface libre sur maillage multibloc. Ph.D. Thesis, Unité d'Hydrodynamique Appliquée et des Constructions Hydrauliques, Université de Liége, Liége, 2006; 356.
Chassaing P. Turbulence En Mécanique Des Fluides-Analyse Du Phénoméne En Vue De Sa Modélisation Par l'ingénieur. Cépadu'es: Toulouse, 2000; 625.
Fischer H, List E, Koh R, Imberger J, Brooks N. Mixing in Inland and Coastal Waters. Academic Press: New York, 1979; 483.
Hervouet J-M. Hydrodynamique Des Écoulements à Surface Libre-Modélisation Numérique Avec la Méthode Des Éléments finis. Presses de l'Ecole Nationale des Ponts et Chaussées: Paris, 2003; 311.
Tennekes H, Lumley J. A First Course in Turbulence. MIT Press: Cambridge, 1972; 320.
Rastogi A, Rodi W. Predictions of heat and mass transfer in open channels. Journal of the Hydraulics Division (ASCE) 1978; 104(HY3):397-420.
Rodi W. Turbulence Models and their Application in Hydraulics-A State-of-the-Art (2nd revised edn). Balkema: Leiden, 1984; 104.
Babarutsi S, Ganoullis J, Chu VH. Experimental investigation of shallow recirculating flows. Journal of Hydraulic Engineering 1989; 115(6):906-924.
Rajaratnam N, Nwachukwu B. Flow near groin-like structures. Journal of Hydraulic Engineering 1983; 109(3):463-480.
Meile T. Influence of macro-roughness of walls on steady and unsteady flow in a channel. Ph.D. Thesis, No. 3952 of Ecole Polytechnique Fédérale de Lausanne and Communication No. 36 of the Laboratory of Hydraulic Constructions (LCH-EPFL), Lausanne, 2007; 414. ISSN 1661-1179.
Morris H, Wiggert J. Applied Hydraulics in Engineering. The Ronald Press Company: New York, 1972; 640.
Babarutsi S, Chu VH. Modeling transverse mixing layer in shallow open-channel flows. Journal of Hydraulic Engineering 1998; 124(6):718-727.
Chapman R, Kuo C. Application of the two-equation k-ε turbulence model to a two-dimensional, steady, free surface flow problem with separation. International Journal for Numerical Methods in Fluids 1985; 5:257-268.
Babarutsi S. Modelling quasi-two-dimensionnal turbulent shear flow. Ph.D. Thesis, Civil Engineering and Applied Mechanics, McGill University, Montreal, 1991; 140.
Erpicum S, Dewals BJ, Archambeau P, Detrembleur S, Pirotton M. Detailed 2D numerical modeling for flood extension forecasting. Proceedings of Riverflow 2008 Conference, Izmir, Turkey, 2008; 2159-2168.
Dewals BJ, Erpicum S, Archambeau P, Detrembleur S, Pirotton M. Depth-integrated flow modelling taking into account bottom curvature. Journal of Hydraulic Research 2006; 44(6):787-795.
Dewals BJ, Kantoush S, Erpicum S, Pirotton M, Schleiss A. Experimental and numerical analysis of flow instabilities in rectangular shallow basins. Environmental Fluid Mechanics 2008; 8:31-54.
Younus M, Chaudhry M. A depth-averaged k-ε turbulence model for the computation of free-surface flow. Journal of Hydraulic Research 1994; 32(3):415-439.
Choi S-U, Garcia M. k-ε turbulence modelling of density currents developing two dimensionally on a slope. Journal of Hydraulic Engineering 2002; 128(1):55-63.
Meile T, Boillat J-L, Schleiss A. Water surface oscillations in a channel with axi-symmetric embayments. Experiments in Fluids, Submitted.
Nassiri M, Babarutsi S, Chu VH. Wall boundary conditions on recirculating flows dominated by bottom friction. Proceedings of XXVIII IAHR Congress, Graz, Austria, 1999.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.