[en] The influence of relative humidity (RH) on the extremely slow compaction dynamics of a granular assembly has been experimentally investigated. Millimeter-sized glass beads are considered. Compaction curves are fitted by stretched exponentials with characteristic time τ and exponent δ, which are seen to be deeply affected by the moisture content. A kinetic model, taking into account both triboelectric and capillary effects, is in excellent agreement with our results. It confirms the existence of an optimal condition at a relative humidity ≈45% for minimizing cohesive interactions between glass beads. The exponent δ is seen to depend strongly on the diffusive character of grains and voids inside the packing: diffusion for cohesiveless particles and subdiffusion when cohesion plays a role. As a consequence, the RH represents a relevant parameter that should be reported for every experimental work on a slowly driven dense random packing.
Disciplines :
Physics
Author, co-author :
Vandewalle, Nicolas ; Université de Liège - ULiège > Département de physique > Physique statistique
Lumay, Geoffroy ; Université de Liège - ULiège > Département de physique > Physique statistique
Ludewig, François ; Université de Liège - ULiège > Département de physique > Physique statistique
Fiscina, Jorgue Eduardo
Language :
English
Title :
How relative humidity affects random packing experiments
Publication date :
2012
Journal title :
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
ISSN :
1539-3755
eISSN :
1550-2376
Publisher :
American Physical Society, College Park, United States - Maryland
T. Aste and D. Weaire, The Pursuit of Perfect Packing (IOP, London, 2000).
J. B. Knight, C. G. Fandrich, C. N. Lau, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.51.3957 51, 3957 (1995).
P. Richard, M. Nicodemi, R. Delannay, P. Ribière, and D. Bideau, Nat. Mater. 1476-1122 10.1038/nmat1300 4, 121 (2005). (Pubitemid 40178709)
G. Lumay and N. Vandewalle, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.70.051314 70, 051314 (2004). (Pubitemid 40086488)
G. Lumay and N. Vandewalle, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.028002 95, 028002 (2005). (Pubitemid 41506359)
K. Lu, E. E. Brodsky, and H. P. Kavehpour, Nat. Phys. 1745-2473 10.1038/nphys934 4, 404 (2008).
C. Caballero, E. Kolb, A. Lindner, J. Lanuza, and E. Clement, J. Phys.: Condens. Matter JCOMEL 0953-8984 10.1088/0953-8984/17/24/009 17, S2503 (2005). (Pubitemid 40871966)
C. Mankoc, A. Garcimartín, I. Zuriguel, D. Maza, and L. A. Pugnaloni, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.80.011309 80, 011309 (2009).
The number of papers on granular matter, as well as the fraction of them including hygrometry information, has been estimated with the help of the ISI Web of Knowledge database.
L. Bocquet, E. Charlaix, S. Ciliberto, and J. Crassous, Nature (London) NATUAS 0028-0836 10.1038/25492 396, 735 (1998). (Pubitemid 29024047)
J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1985).
G. Lumay and N. Vandewalle, New J. Phys. NJOPFM 1367-2630 10.1088/1367-2630/9/11/406 9, 406 (2007). (Pubitemid 350099173)
J. E. Fiscina, G. Lumay, F. Ludewig, and N. Vandewalle, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.105.048001 105, 048001 (2010).
A. Kudrolli, Nat. Mater. 1476-1122 10.1038/nmat2131 7, 174 (2008).
M. Scheel, R. Seemann, M. Brinkmann, M. Di Michiel, A. Sheppard, B. Breidenbach, and S. Herminghaus, Nat. Mater. 1476-1122 10.1038/nmat2117 7, 189 (2008). (Pubitemid 351311292)
F. Ludewig, S. Dorbolo, T. Gilet, and N. Vandewalle, Europhys. Lett. EULEEJ 0295-5075 10.1209/0295-5075/84/44001 84, 44001 (2008).
J. A. Dijksman and M. van Hecke, Europhys. Lett. EULEEJ 0295-5075 10.1209/0295-5075/88/44001 88, 44001 (2009).
G. Williams and D. C. Watts, Trans. Faraday Soc. TFSOA4 0014-7672 10.1039/tf9706600080 66, 80 (1970).
A. V. Anikeenko and N. N. Medvedev, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.235504 98, 235504 (2007). (Pubitemid 47139769)
A. J. Forsyth, S. R. Hutton, C. F. Osborne, and M. J. Rhodes, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.87.244301 87, 244301 (2001).
G. Lumay, N. Vandewalle, C. Bodson, L. Delattre, and O. Gerasimov, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.2338801 89, 093505 (2006). (Pubitemid 44320003)
M. Rohdes, S. Takeuchi, K. Liffman, and K. Muniandy, Granular Matter GRMAFE 1434-5021 10.1007/s10035-003-0140-z 5, 107 (2003). (Pubitemid 37539100)
T. Boutreux and P. G. de Gennes, Physica A PHYADX 0378-4371 10.1016/S0378-4371(97)00236-7 244, 59 (1997).
N. Vandewalle, G. Lumay, O. Gerasimov, and F. Ludewig, Eur. Phys. J. E EPJSFH 1292-8941 10.1140/epje/e2007-00031-0 22, 241 (2007). (Pubitemid 46574238)
M. J. Saxton, Biophys. J. BIOJAU 0006-3495 10.1016/S0006-3495(94)80789-1 66, 394 (1994).
D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed. (Taylor & Francis, London, 1994).
G. Lois, J. Blawzdziewicz, and C. S. O'Hern, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.100.028001 100, 028001 (2008). (Pubitemid 351147756)
G. Lois, J. Blawzdziewicz, and C. S. O'Hern, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.102.015702 102, 015702 (2009).