[en] Carbon nanotube reinforced polymer foams filling a metallic honeycomb were processed and characterized for the production of hybrid materials with high electromagnetic absorption potential. Electromagnetic modeling and experimental characterization of the hybrids proved that the honeycomb, acting as a hexagonal waveguide, improves the absorption properties in the gigahertz range above the cutoff frequency. The electromagnetic absorption can be tuned by changing the hybrid material properties. The required levels of electrical conductivity are attained owing to the dispersion of low amounts (1–2 wt%) of carbon nanotubes inside the polymermatrix. The combination of the foam and honeycomb architecture contributes to decrease the real part of the relative effective permittivity Re{εr,eff }. Varying the cell shape of the honeycomb changes the frequency range for high absorption. An analytical model for the absorption has been developed, showing good agreement with the experimental results.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Quiévy, Nicolas; Université catholique de Louvain (UCL)
Bollen, Pierre; Université catholique de Louvain (UCL)
Thomassin, Jean-Michel ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Detrembleur, Christophe ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Pardoen, Thomas; Université catholique de Louvain (UCL)
Bailly, Christian; Université catholique de Louvain (UCL)
Huynen, Isabelle; Université catholique de Louvain (UCL)
R. L. Fante andM. T.McCormack, "Reflection properties of the Salisbury screen," IEEE Trans. Antennas Propag., vol. 36, no. 10, pp. 1443-1454, Oct. 1988.
V. Sunny, P. Kurian, P. Mohanan, P. A. Joy, and M. R. Anantharaman, "A flexible microwave absorber based on nickel ferrite nanocomposite," J. Alloys Compounds, vol. 489, no. 1, pp. 297-303, 2010.
Y. Yang, C. Xu, Y. Xia, T. Wang, and F. Li, "Synthesis and microwave absorption properties of FeCo nanoplates," J. Alloys Compounds, vol. 493, no. 1-2, pp. 549-552, 2010.
S. P. Gairola, V. Verma, A. Singh, L. P. Purohit, and R. K. Kotnala, "Modified composition of barium ferrite to act as a microwave absorber in X-band frequencies," Solid State Commun., vol. 150, no. 3-4, pp. 147-151, 2010.
R. S. Meena, S. Bhattachrya, and R. Chatterjee, "Development of tuned microwave absorbers using U-type hexaferrite," Mater. Design, vol. 31, no. 7, pp. 3220-3226, 2010.
T.-H. Ting and K.-H. Wu, "Synthesis, characterization of polyaniline/ BaFe12O19 composites with microwave-absorbing properties," J. Magnetism Magn. Mater., vol. 322, no. 15, pp. 2160-2166, 2010.
J. Honey, T. M. Rinku, J. Jacob, K. T. Mathew, and J. Rani, "Conducting polyaniline composites as microwave absorbers," Polymer Composites, vol. 28, pp. 588-592, 2007. (Pubitemid 47585881)
K. Lakshmi, J. Honey, K. T. Mathew, J. Rani, and K. E. George, "Microwave absorption, reflection andEMIshielding of PU-PANI composite," Acta Materialia, vol. 57, no. 2, pp. 371-375, 2009.
M. H. Al-Saleh, G. A. Gelves, and U. Sundararaj, "Copper nanowire polystyrene nanocomposites: Lower percolation threshold and higher EMI shielding," Composites Part A, vol. 42, pp. 92-97, 2011.
G. A. Gelves,M.H.Al-Saleh, and U. Sundararaj, "Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation," J. Mater. Chem., vol. 21, pp. 829-836, 2011.
C. P. Neo and V. K. Varadan, "Optimization of carbon fiber composite for microwave absorber," IEEE Trans. Electromagn. Compat, vol. 46, no. 1, pp. 102-106, Feb. 2004.
D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, "Broadband electromagnetic absorbers using carbon nanostructure-based composites," IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pp. 2633-2646, Oct. 2011.
I. M. De Rosa, F. Sarasini, M. S. Sarto, and A. Tamburrano, "EMC impact of advanced carbon fiber/carbon nanotube reinforced composites for nextgeneration aerospace applications," IEEE Trans. Electromagn. Compat., vol. 50, no. 3, pp. 556-563, Aug. 2008.
Y. J. Kim, K. J. An, K. S. Suh, H. D. Choi, J. H. Kwon, Y.-C. Chung, W. N. Kim, A.-K. Lee, J.-I. Choi, and H. G. Yoon, "Hybridization of oxidized MWNT and silver powder in polyurethane matrix for electromagnetic interference shielding application," IEEE Trans. Electromagn. Compat., vol. 47, no. 4, pp. 872-879, Nov. 2005. (Pubitemid 43174011)
K.-Y. Park, J.-H. Han, S.-B. Lee, J.-B. Kim, J.-W. Yi, and S.-K. Lee, "Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles," Comp. Sci. Tech., vol. 69, no. 7-8, pp. 1271-1278, 2009.
P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, "Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding," Mater. Chem. Phys., vol. 113, no. 2-3, pp. 919-926, 2009.
J.-M. Thomassin, X. Lou, C. Pagnoulle, A. Saib, L. Bednarz, I. Huynen, R. Jérôme, and C. Detrembleur, "MWCNT/Poly(ε-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties," J. Phys. Chem. C, vol. 111, pp. 11186-11192, 2007. (Pubitemid 47317509)
A. Saib, L. Bednarz, R. Daussin, C. Bailly, X. Lou, J.-M. Thomassin, C. Pagnoul, C. Detrembleur, R. Jérôme, and I. Huynen, "Carbon nanotube composites for broadband microwave absorbing materials," IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2745-2754, Jun. 2006.
I. Huynen, L. Bednarz, J.-M. Thomassin, C. Pagnoulle, R. Jerome, and C. Detrembleur, "Microwave absorbers based on foamed nanocomposites with graded concentration of carbon nanotubes," in Proc. 38th Eur. Microw. Conf., Amsterdam, The Netherlands, 2008, pp. 5-8.
I. Huynen, N. Quiévy, C. Bailly, P. Bollen, C. Detrembleur, S. Eggermont, I. Molenberg, J.-M. Thomassin, L. Urbanczyk, and T. Pardoen, "Multifunctional hybrids for electromagnetic absorption," Acta. Materialia., vol. 59, pp. 3255-3266, 2011.
F. Choubani, J. David, and N. E. Mastorakis, "Experiment on the shielding by hollow conducting tubes," IEEE Trans. Electromagn. Compat, vol. 48, no. 2, pp. 342-347, May 2006. (Pubitemid 43811380)
M. F. Ashby, Material Selection in Mechanical Design, 3rd ed. Oxford, U.K.: Elsevier, 2005.
R. F. Harrington, Time-Harmonic Electromagnetic Fields. NewYork: McGraw-Hill, 1961.
R. Marques, J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split-ringresonator- loaded metallic waveguides," Phys. Rev. Lett, vol. 89, no. 18, pp. 183901-1-183901-6, 2002.
C. Caloz and T. Itoh, Electromagnetic Metamaterial Transmission Line Theory and Microwave Applications. Hoboken, NJ:Wiley, 2006, ch. 5.
M. W. Hyde and M. J. Havrilla, "Measurement of complex permittivity and permeability using two flanged rectangular waveguides," in Proc. IEEE Microw. Symp., 2007, pp. 531-534. (Pubitemid 47486057)
S. Bakhtiari, S. I. Ganchev, and R. Zoughi, "Open-ended rectangular waveguide for nondestructive thickness measurement and variation detection of lossy dielectric slabs backed by a conducting plate," IEEE Trans. Instrum. Meas, vol. 42, no. 1, pp. 19-24, Feb. 1993. (Pubitemid 23622940)
A. M. Nicolson and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., vol. 19, no. 4, pp. 377-382, Nov. 1970.
W. B. Weir, "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, vol. 62, no. 1, pp. 33-36, Jan. 1974.