Sohl J, Jaswal S, Agard DA (1998) Unfolded conformations of a-lytic protease are more stable than its native state. Nature 395: 817–819.
Bryan PN (2002) Prodomains and protein folding catalysis. Chem Rev 102: 4805–4815.
Baker D, Sohl JL, Agard DA (1992) A protein-folding reaction under kinetic control. Nature 356: 263–265.
Shinde UP, Liu JJ, Inouye M (1997) Protein memory through altered folding mediated by intramolecular chaperones. Nature 389: 520–522.
Pauwels K, Van Molle I, Tommassen J, Van Gelder P (2007) Chaperoning Anfinsen: the steric chaperones. Mol Microbiol 64: 917–922.
Frenken LGJ, de Groot A, Tommassen J, Verrips CT (1993) Role of the lipB gene product in the folding of the secreted lipase of Pseudomonas glumae. Mol Microbiol 9: 591–599.
Devescovi G, Bigirimana J, Degrassi G, Cabrio L, LiPuma JJ, et al. (2007) Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice. Appl Environ Microbiol 73: 4950–4958.
Filloux A (2004) The underlying mechanisms of type II protein secretion. Biochim Biophys Acta 1694: 163–179.
Rosenau F, Tommassen J, Jaeger KE (2004) Lipase-specific foldases in bacteria. Chem Bio Chem 5: 152–161.
Pauwels K, Lustig A, Wyns L, Tommassen J, Savvides SNS, et al. (2006) Structure of a membrane-based steric chaperone in complex with its lipase substrate. Nat Struct Mol Biol 13: 374–375.
Frenken LGJ, Egmond MR, Batenburg AM, Bos JW, Visser C, et al. (1992) Cloning of the Pseudomonas glumae lipase gene and determination of the active site residues. Appl Environ Microbiol 58: 3787–3791.
Noble MEM, Cleasby A, Johnson LN, Egmond MR, Frenken LGJ (1993) The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett 33: 123–128.
El Khattabi M, Van Gelder P, Bitter W, Tommassen J (2003) Role of the calcium ion and the disulfide bond in the Burkholderia glumae lipase. J Mol Catal B: Enzym 22: 329–338.
Drepper T, Eggert T, Hummel W, Leggewie C, Pohl M, et al. (2006) Novel biocatalysts for white biotechnology. Biotechnol J 1: 777–786.
El Khattabi M, Van Gelder P, Bitter W, Tommassen J (2000) Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone. J Biol Chem 275: 26885–26891.
D’Amico S, Feller G (2009) A nondetergent sulfobetaine improves protein unfolding reversibility in microcalorimetric studies. Anal Biochem 385: 389–391.
Collins T, D’Amico S, Georlette D, Marx JM, Huston AL, et al. (2006) A nondetergent sulfobetaine prevents protein aggregation in microcalorimetric studies. Anal Biochem 352: 299–301.
Sánchez-Ruiz JM, López-Lacomba JL, Cortijo M, Mateo PL (1988) Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry 27: 1648–1652.
Lepock JR, Ritchie KP, Kolios MC, Rodahl AM, Heinz KA, et al. (1992) Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation. Biochemistry 31: 12706–12712.
Hubbard SJ, Campbell SF, Thornton JM (1991) Molecular Recognition. Conformational analysis of limited proteolytic sites and serine proteinase protein inhibitors. J Mol Biol 220: 507–530.
Timmer JC, Zhu W, Pop C, Regan T, Snipas SJ, et al. (2009) Structural and kinetic determinants of protease substrates. Nat Struct Mol Biol 16: 1101–1109.
Hubbard SJ, Beynon RJ, Thornton JM (1998) Assessment of conformational parameters as predictors of limited proteolytic sites in native protein structures. Prot Eng 11: 349–359.
Kuwajima K, Arai M (2000) The molten globule state: the physical picture and biological significance. In: Pain RH, ed. Mechanisms of Protein Folding Oxford University Press, Oxford. pp 212–249.
Eder J, Rheinnecker M, Fersht AR (1993) Folding of subtilisin BPN’: role of the pro-sequence. J Mol Biol 233: 293–304.
Ptitsyn OB, Pain RH, Semisotnov GV, Zerovnik E, Razgulyaev OI (1990) Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett 262: 20–24.
Ptitsyn OB (1992) The molten globule state. In: Creighton TE, ed. Protein Folding W.H. Freeman, New York. pp 243–300.
Uversky VN, Winter S, Löbel G (1996) Use of fluorescence decay times of 8-ANS-protein complexes to study the conformational transitions in proteins which unfold through the molten globule state. Biophys Chem 60: 79–88.
Cunningham E, Jaswal S, Sohl J, Agard D (1999) Kinetic stability as a mechanism for protease longevity. Proc Natl Acad Sci U S A 96: 11008–11014.
Douzi B, Ball G, Cambillau C, Tegoni M, Voulhoux R (2011) Deciphering the Xcp Pseudomonas aeruginosa type II secretion machinery through multiple interactions with substrates. J Biol Chem 286: 40792–40801.
Rodriguez-Larrea D, Minning S, Borchert TV, Sanchez-Ruiz JM (2006) Role of solvation barriers in protein kinetic stability. J Mol Biol 360: 715–724.
Pauwels K, Van Gelder P (2008) Affinity-based isolation of a bacterial lipase through steric chaperone interactions. Prot Expr Purif 59: 342–348.
Pauwels K, Loris R, Vandenbussche G, Ruysschaert JM, Wyns L, et al. (2005) Crystallization and crystal manipulation of a steric chaperone in complex with its substrate lipase. Acta Cryst F 61: 791–795.
Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, et al. (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 93: 14440–14445.
DeLano WL (2002) The PyMOL Molecular Graphics System DeLano Scientific, San Carlos, CA, USA.