[en] The middle Miocene is a crucial period for the evolution of apes, and it corresponds to their
<br /><br />appearance in Europe. The dispersion of apes was made possible by tectonic changes and the
<br /><br />expansion of their habitat, (sub-) tropical forest, in Europe. The context in which the middle
<br /><br />Miocene climatic optimum occurred still lacks constraints in terms of atmospheric pCO2 and
<br /><br />ice-sheet volume and extent. Using a coupled atmosphere-ocean general circulation model
<br /><br />(GCM) and dynamic vegetation model, we investigated the sensitivity of Miocene climate and
<br /><br />vegetation to pCO2 levels and Antarctic ice-sheet confi gurations. Our results indicate that
<br /><br />higher than present pCO2 is necessary to simulate subtropical forest in Western and Central
<br /><br />Europe during the middle Miocene, but that a threshold at high pCO2 makes subtropical
<br /><br />forest partly collapse. Moreover, removing ice over Antarctica modifi es oceanic circulation
<br /><br />and induces warmer and slightly wetter conditions in Europe, which are consistent with the
<br /><br />expansion of subtropical forest. These results suggest that a small East Antarctic Ice Sheet
<br /><br />(25% of present-day ice volume) together with higher than present pCO2 values are in better
<br /><br />agreement with available European middle Miocene data.
Research Center/Unit :
Unité de Modélisation du Climat et des Cycles Biogéochimiques, Université de Liège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Hamon, Noémie; Laboratoire des Sciences du Climat et de l’environnement, CNRS-CEA-UVSQ
Sepulchre, Pierre; Laboratoire des Sciences du Climat et de l’environnement, CNRS-CEA-UVSQ
Donnadieu, Yannick; Laboratoire des Sciences du Climat et de l’environnement, CNRS-CEA-UVSQ
Henrot, Alexandra-Jane ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
François, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Jaeger, Jean-Jacques; CNRS-INEE, Université de Poitiers
Ramstein, Gilles; Laboratoire des Sciences du Climat et de l’environnement, CNRS-CEA-UVSQ
Language :
English
Title :
Growth of subtropical forests in Miocene Europe: The roles of carbon dioxide and Antarctic ice volume
Publication date :
2012
Journal title :
Geology
ISSN :
0091-7613
eISSN :
1943-2682
Publisher :
Geological Society of America, Boulder, United States - Colorado
Volume :
40
Pages :
567-570
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Comprendre le refroidissement du Cénozoïque
Funders :
FRFC - Fonds de la Recherche Fondamentale Collective
Akgün, F., Kayseri, M.S., and Akkiraz, M.S., 2007, Palaeoclimatic evolution and vegetational changes during the late Oligocene-Miocene period in Western and Central Anatolia (Turkey): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 253, p. 56-90, doi:10.1016/j.palaeo.2007.03.034.
Baker, J.T., and Allen, L.H., 1994, Assessment of the impact of rising carbon dioxide and other potential climate changes on vegetation: Environmental Pollution, v. 83, p. 223-235, doi:10.1016/0269-7491(94)90037-X.
Böhme, M., Bruch, A.A., and Selmeier, A., 2007, The reconstruction of early and middle Miocene climate and vegetation in southern Germany as determined from fossil wood flora: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 253, p. 91-114, doi:10.1016/j.palaeo.2007.03.035.
Böhme, M., Aziz, H.A., Prieto, J., Bachtadse, V., and Schweigert, G., 2011a, Bio-magnetostratigraphy and environment of the oldest Eurasian hominoid from the early Miocene of Engelswies (Germany): Journal of Human Evolution, v. 61, p. 332-339, doi:10.1016/j.jhevol.2011.04.012.
Böhme, M., Winklhofer, M., and Ilg, A., 2011b, Miocene precipitation in Europe: Temporal trends and spatial gradients: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 304, p. 212-218, doi:10.1016/j.palaeo.2010.09.028.
Casanovas-Vilar, I., Alba, D.M., Garcès, M., Robles, J.M., and Moyà-Solà, S., 2011, Updated chronology for the Miocene hominoid radiation in Western Eurasia: Proceedings of the National Academy of Sciences of the United States of America, v. 108, no. 14, p. 5554-5559, doi:10.1073/pnas.1018562108.
Donnadieu, Y., Pierrehumbert, R.T., Jacob, R.L., and Fluteau, F., 2006, Modelling the primary control of paleogeography on Cretaceous climate: Earth and Planetary Science Letters, v. 248, p. 426-437, doi:10.1016/j.epsl.2006.06.007.
François, L., Ghislain, L., Otto, D., and Micheels, A., 2006, Late Miocene vegetation reconstruction with the CARAIB model: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 238, p. 302-320, doi:10.1016/j.palaeo.2006.03.034.
François, L., Utescher, T., Favre, E., Henrot, A.-J., Warnant, P., Micheels, A., Erdei, B., Suc, J.-P., Cheddadi, R., and Mosbrugger, V., 2011, Modelling late Miocene vegetation in Europe: Results of the CARAIB model and comparison with palaeovegetation data: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 304, p. 359-378, doi:10.1016/j.palaeo.2011.01.012.
Hartwig, W.C., ed., 2002, The Primate Fossil Record: New York, Cambridge University Press, 530 p.
Henrot, A.-J., François, L., Favre, E., Butzin, M., Ouberdous, M., and Munhoven, G., 2010, Effects of CO2, continental distribution, topography and vegetation changes on the climate at the middle Miocene: A model study: Climate of the Past, Discussions, v. 6, p. 489-535, doi:10.5194/cpd-6-489-2010.
Herold, N., Seton, M., Müller, R.D., You, Y., and Huber, M., 2008, Middle Miocene tectonic boundary conditions for use in climate models: Geochemistry, Geophysics, Geosystems, v. 9, p. Q10009, doi:10.1029/2008GC002046.
Herold, N., You, Y., Müller, R.D., and Seton, M., 2009, Climate model sensitivity to change in Miocene paleotopography: Australian Journal of Earth Sciences, v. 56, p. 1049-1059, doi:10.1080/08120090903246170.
Ivanov, D.A., Utescher, T., Mosbrugger, V., Syabryaj, S., Djordjevic-Milutinovic, D., and Molchanoff, S., 2010, Miocene vegetation and climate dynamics in Eastern and Central Paratethys (southeastern Europe): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 304, p. 262-275, doi:10.1016/j.palaeo.2010.07.006.
Jacob, R.L., 1997, Low-Frequency Variability in a Simulated Atmosphere Ocean System [Ph.D. thesis]: Madison, Wisconsin, University of Wisconsin- Madison, 172 p.
Jiménez-Moreno, G., and Suc, J.-P., 2007, Middle Miocene latitudinal climatic gradient in Western Europe: Evidence from pollen records: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 253, p. 208-255, doi:10.1016/j.palaeo.2007.03.040.
Krapp, M., and Jungclaus, J.H., 2011, The middle Miocene climate as modelled in an atmosphere-oceanbiosphere model: Climate of the Past, Discussions, v. 7, p. 1935-1972, doi:10.5194/cpd-7-1935-2011.
Kürschner, W.M., Kvaçek, Z., and Dilcher, D.L., 2008, The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems: Proceedings of the National Academy of Sciences of the United States of America, v. 105, p. 449-453, doi:10.1073/pnas.0708588105.
Otto, D., Rasse, D., Kaplan, J., Warnant, P., and François, L., 2002, Biospheric carbon stocks reconstructed at the Last Glacial Maximum: Comparison between general circulation models using prescribed and computed sea surface temperatures: Global and Planetary Change, v. 33, p. 117-138, doi:10.1016/S0921-8181(02)00066-8.
Pagani, M., Arthur, M.A., and Freeman, K.H., 1999, Miocene evolution of atmospheric carbon dioxide: Paleoceanography, v. 14, p. 273-292, doi:10.1029/1999PA900006.
Pearson, P.M., and Palmer, M.R., 2000, Atmospheric carbon dioxide concentrations over the past 60 million years: Nature, v. 406, p. 695-699, doi:10.1038/35021000.
Pekar, S.F., and DeConto, R.M., 2006, High-resolution icevolume estimates for the early Miocene: Evidence for a dynamic ice sheet in Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 231, p. 101-109, doi:10.1016/j.palaeo.2005.07.027.
Poulsen, C.J., Pierrehumbert, R.T., and Jacob, R.L., 2001, Impact of ocean dynamics on the simulation of the Neoproterozoic " Snowball Earth" : Geophysical Research Letters, v. 28, p. 1575-1578, doi:10.1029/2000GL012058.
Robinson, M.M., Valdes, P.J., Haywood, A.M., Dowsett, H.J., Hill, D.J., and Jones, S.M., 2011, Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 309, p. 92-97, doi:10.1016/j.palaeo.2011.01.004.
Royer, D.L., Wing, S.L., Beerling, D.J., Jolley, D.W., Koch, P.L., Hickey, L.J., and Berner, R.A., 2001, Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary: Science, v. 292, p. 2310-2313, doi:10.1126/science.292.5525.2310.
Tobis, M., Schafer, C., Foster, I., Jacob, R., and Anderson, J., 1997, FOAM: Expanding the Horizons of Climate Modeling: San Jose, California, Supercomputing 97, doi:10.1145/509593.509620.
Tong, J.A., You, Y., Müller, R.D., and Seton, M., 2009, Climate model sensitivity to atmospheric CO2 concentrations for the middle Miocene: Global and Planetary Change, v. 67, p. 129-140, doi:10.1016/j.gloplacha.2009.02.001.
Tripati, A.K., Roberts, C.D., and Eagle, R.A., 2009, Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years: Science, v. 326, p. 1394-1397, doi:10.1126/science.1178296.
Utescher, T., Djordjevic-Milutinovic, D., Bruch, A., and Mosbrugger, V., 2007, Palaeoclimate and vegetation change in Serbia during the last 30 Ma: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 253, p. 141-152, doi:10.1016/j.palaeo.2007.03.037.
Utescher, T., Bruch, A.A., Micheels, A., Mosbrugger, V., and Popova, S., 2011, Cenozoic climate gradients in Eurasia-A palaeo-perspective on future climate change?: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 304, p. 351-358, doi:10.1016/j.palaeo.2010.09.031.
Wolfe, J.A., 1985, Distribution of major vegetational types during the Tertiary, in Sundquist, E.T., and Broecker, W.S., eds., The Carbon Cycle and Atmospheric CO2: Natural Variations, Archaean to Present: American Geophysical Union Geophysical Monograph 32, p. 357-375, doi:10.1029/GM032p0357.
You, Y., Huber, M., Müller, R.D., Poulsen, C.J., and Ribbe, J., 2009, Simulation of the middle Miocene climate optimum: Geophysical Research Letters, v. 36, p. L04702, doi:10.1029/2008GL036571.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001, Trends, rhythms and aberrations in global climate 65 Ma to present: Science, v. 292, p. 686- 693, doi:10.1126/science.1059412.