Reference : Interplay among catecholamine systems: dopamine binds to alpha2-adrenergic receptors ...
Scientific journals : Article
Social & behavioral sciences, psychology : Neurosciences & behavior
Interplay among catecholamine systems: dopamine binds to alpha2-adrenergic receptors in birds and mammals.
Cornil, Charlotte mailto [Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie de la différenciation sexuelle du cerveau >]
Ball, Gregory F [> > > >]
Journal of Comparative Neurology (The)
Wiley Liss, Inc.
Yes (verified by ORBi)
New York
[en] Adrenergic alpha-Antagonists/metabolism ; Animals ; Binding, Competitive/physiology ; Birds/anatomy & histology/metabolism ; Brain/anatomy & histology/metabolism ; Catecholamines/metabolism ; Cells, Cultured ; Coturnix ; Dopamine/metabolism ; Female ; Finches ; Idazoxan/analogs & derivatives/metabolism ; Male ; Mammals/anatomy & histology/metabolism ; Neurons/metabolism ; Norepinephrine/metabolism ; Organ Culture Techniques ; Radioligand Assay ; Rats ; Rats, Long-Evans ; Receptor Cross-Talk/physiology ; Receptors, Adrenergic, alpha-2/metabolism ; Receptors, Dopamine/metabolism
[en] Dopaminergic and adrenergic receptors are G-protein-coupled receptors considered to be different based on their pharmacology and signaling pathways. Some receptor subtypes that are members of one family are actually closer in phylogenetic terms to some subtypes belonging to the other family, suggesting that the pharmacological specificity among these receptors from different families is not perfect. Indeed, evidence is accumulating that one amine can cross-talk with receptors belonging to the other system. However, most of these observations were collected in vitro using artificial cell models transfected with cloned receptors, so that the occurrence of this phenomenon in vivo as well as its distribution in the central nervous system is not known. In this study the pharmacological basis of possible in vivo interactions between dopamine and alpha(2)-adrenergic receptors was investigated in quail, zebra finches, and rats. Binding competitions showed that dopamine displaces the binding of the selective alpha(2)-adrenergic ligand, [(3)H]RX821002, in the brain of the three species with an affinity approximately 10-28-fold lower than that of norepinephrine. Dopamine also displaces with an affinity 3-fold lower than norepinephrine the binding of [(3)H]RX821002 to human alpha(h2A)-adrenergic receptors expressed in Sf9 cells. The anatomical distribution of this interaction was assessed in brain slices of quail and rat based on autoradiographic methods. Both norepinephrine and dopamine significantly displace [(3)H]RX821002 binding in all brain nuclei considered. Together, these data provide evidence for an interaction between the dopaminergic and noradrenergic systems in the vertebrate brain, albeit with species variations.
Copyright 2008 Wiley-Liss, Inc.

File(s) associated to this reference

Fulltext file(s):

Restricted access
23. Cornil08-JCN.pdfPublisher postprint2.14 MBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.