Geological heterogeneity; Sedimentary structures; Hydrogeology; Hydraulic conductivity; Air permeability; Geostatistics
Abstract :
[en] The Brussels Sands display a complex three-dimensional subsurface architecture. This sedimentological heterogeneity induces a highly heterogeneous spatial distribution of hydrogeological parameters at different scales and may consequently influence subsurface fluid flow and solute migration. This study aims at characterizing spatial variability of permeability at different scales in the Brussels Sands. Firstly, a literature review on the permeability distribution of the Brussels Sands was performed. Secondly, a field campaign was carried out consisting of field observations of the small-scale sedimentary structures and in situ measurements of air permeability. A total of 6550 cm-scale air permeability measurements were carried out in situ in three Brussels Sands quarries in the central part of Belgium: Bierbeek, Mont Saint Guibert and Chaumont Gistoux. On the large basin scale, substantial differences in permeability are observed. A literature data analysis shows that there is no clear correlation between hydraulic conductivity and sedimentary facies. At the small scale, results show that permeability heterogeneity and anisotropy are strongly influenced by sedimentary heterogeneity in all three quarries. Clay-rich sedimentary features such as bottomsets and distinct mud drapes exhibit a different statistical and geostatistical permeability distribution compared to the cross-bedded lithofacies, where the permeability anisotropy is dominated by the foreset lamination orientation.
Research Center/Unit :
Aquapôle - ULiège
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Possemiers, Mathias; Katholieke Universiteit Leuven - KUL > Department of Earth and Environmental Sciences > Applied Geology and Mineralogy
Huysmans, Marijke; Katholieke Universiteit Leuven - KUL > Department of Earth and Environmental Sciences > Applied Geology and Mineralogy
Peeters, Luk; CSIRO > Land and Water, Waite Campus, Waite Road Urrbrae, Australia.
Batelaan, Okke; Vrije Universiteit Brussel - VUB > Department of Hydrology and Hydraulic Engineering
Dassargues, Alain ; Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Hydrogéologie & Géologie de l'environnement
Language :
English
Title :
Relationship between sedimentary features and permeability at different scales in the Brussels Sands
Anderson, M.P., 1989. Hydrogeological facies models to delineate largescale spatial trends in glacial and glaciofluvial sediments. Geological Society of America Bulletin, 101, 501-511.
Bronders, J., 1989. Bijdrage tot de geohydrologie van Midden België door middel van geostatistische analyse en een numeriek model. PhD thesis, Vrije Universiteit Brussel.
Bronders, J. & De Smedt, F., 1991. Geostatistische analyse van de hydraulische geleidbaarheid van watervoerende lagen in Midden-België. Water, 59(4), 127-132.
Castle, J.W., Molz, F.J., Lu, S. & Dinwiddie, C.L., 2004. Sedimentological and fractal-based analysis of permeability data, John Henry Member, Straight Cliffs Formation (Upper Cretaceous). Utah, U.S.A. Journal of Sedimentary Research, 74(2), 270-284.
Chabot, A., 1996. Synthèse des données géologiques, hydrogéologiques et hydrogéochimiques acquises sur le site de Chaumont-Gistoux. Technical report, GéoBel Conseil.
Davis, J.M., Lohman, R.C., Phillips, F.M., Wilson, J.L. & Love, D.W., 1993. Architecture of the Sierra Ladrones Formation, central New Mexico: depositional controls on the permeability correlation structure. Geological Society of America Bulletin, 105, 998-1007.
Dreyer, T., Scheie, A. & Walderhaug, O., 1990. Minipermeameter based study of permeability trends in channel sand bodies. AAPG Bulletin, 74, 359-374.
Dykstra, H. & Parsons, R.L., 1950. The prediction of oil recovery by waterflood. In Secondary Recovery of Oil in the United States, 2nd edition, American Petroleum Institute, Washington, 160p.
Eijpe, R. & Weber, K.J., 1971. Mini-permeameters for consolidated rock and unconsolidated sand. AAPG Bulletin, 55, 307-309.
Fetter, C.W., 2001. Applied Hydrogeology, 4 thedition. Prentice-Hall inc., Upper Saddle River, New Jersey, 598p.
Fogg, G.E., Noyes, C.D. & Carle, S.F., 1998. Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting. Hydrogeology Journal, 6(1), 131-143.
Goggin, D.J., Chandles, M.A., Kocurec, G. & Lake, L.W., 1988a. Patterns of permeability in eolian deposits: Page Sandstone (Jurassic), NE Arizona. SPE Formation Evaluation, 3, 297-306.
Goggin, D.J., Thrasher, R.L. & Lake, L.W., 1988b. A theoretical and experimental analysis of minipermeameter response including gas slippage and high velocity flow effects. In Situ, 12, 79-116.
Gulinck, M. & Hacquaert, A., 1954. L'Eocène. In Prodrôme d'une description géologique de la Belgique, 451-493.
Haecon, 2007. Ontwikkelen van regionale modellen ten behoeve van het Vlaamse Grondwater Model (VGM) in GMS/MODFLOW: Perceel nr. 3, Brulandkrijtmodel. Technical report, Ministerie van de Vlaamse Gemeenschap, Departement Leefmilieu en Infrastructuur, Administratie Milieu-, Natuur-, Land en Waterbeheer, Afdeling Water.
Halvorsen, C. & Hurst, A., 1990. Principles, practice and applications of laboratory minipermeametry. In Worthington, P. F. (ed.), Advances in Core Evaluation, Accuracy and Precision in Reserves Estimation, Gordon & Breach, Amsterdam, 521-549.
Hartkamp, C.A., Arribas, J. & Tortosa, A., 1993. Grain-Size, Composition, Porosity and Permeability Contrasts within Cross-Bedded Sandstones in Tertiary Fluvial Deposits, Central Spain. Sedimentology, 40(4), 787-799.
Heinz, J., Kleineidam, S., Teutsch, G. & Aigner, T., 2003. Heterogeneity patterns of Quaternary glaciofluvial gravel bodies (SW Germany): application to hydrogeology. Sedimentary Geology, 158, 1-23.
Houthuys, R., 1990. Vergelijkende studie van de afzettingsstruktuur van getijdenzanden uit het Eoceen en van de huidige Vlaamse banken. Aardkundige Mededelingen 5, Leuven University Press, 137p.
Houthuys, R., 2011. A sedimentary model of the Brussels Sands, Eocene, Belgium. Geologica Belgica, 14(1-2), 55-74.
Huysmans, M & Dassargues, A., 2009. Application of multiple-point geostatistics on modeling groundwater flow and transport in a crossbedded aquifer. Hydrogeology Journal, 17(8), 1901-1911.
Huysmans, M., Peeters, L., Moermans, G. & Dassargues, A., 2008. Relating small-scale sedimentary structures and permeability in a cross-bedded aquifer. Journal of Hydrology, 361, 41-51.
Isaaks, E.H. & Srivastava, R.M., 1989. An introduction to applied geostatistics. Oxford University Press, 561p.
Iversen, B.V., Moldrup, P., Schjonning, P. & Jacobsen, O.H., 2003. Field application of a portable air permeameter to characterize spatial variability in air and water permeability. Vadose Zone Journal, 2, 618-626.
Jacobsen, T. & Rendall, H., 1991. Permeability patterns in some fluvial sandstones. An outcrop study from Yorkshire, northeast England. In Lake L.W., Carroll H.B. Jr. & Wesson T.C. (eds.), Reservoir characterization II, San Diego, Academic Press, 315-338.
Jalbert, M. & Dane, J.H., 2003. A handheld device for intrusive and nonintrusive field measurements of air permeability. Vadose Zone Journal, 2, 611-617.
Jensen, J.L., Glasbey, C.A. & Corbett, P.W.M., 1994. On the interaction of geology, measurement, and statistical-analysis of small-scale permeability measurements. Terra Nova, 6(4), 397-403.
Klingbeil, R., Kleineidam, S., Asprion, U., Aigner, T. & Teutsch, G., 1999. Relating lithofacies to hydrofacies: outcrop-based hydrogeological characterization of quaternary gravel deposits. Sedimentary Geology, 129(3-4), 299-310.
Koltermann, C.E. & Gorelick, S., 1996. Heterogeneity in sedimentary deposits: a review of structure imitating, process-imitation, and descriptive approaches. Water Resources Research, 32(9), 2617-2658.
Loll, P., Moldrup, P., Schjonning, P. & Riley, H., 1999. Predicting saturated hydraulic conductivity from air permeability: Application in stochastic water infiltration modeling. Water Resources Research, 35(8), 2387-2400.
McCave, I.N. & Syvitski, J.P.M., 1991. Principles and methods of geological particle size analysis. In Syvitski, J.P.M. (ed.), Principles, Methods and Application of Particle Size Analysis. Cambridge University Press, Cambridge, UK, 3-21.
Mikes, D., 2006. Sampling procedure for small-scale heterogeneities (cross-bedding) for reservoir modeling. Marine and Petroleum Geology, 23(9-10), 961-977.
Morton, K., Thomas, S., Corbett, P. & Davies, D., 2002. Detailed analysis of probe permeameter and vertical interference test permeability measurements in a heterogeneous reservoir. Petroleum Geoscience, 8, 209-216.
Ruthy, I. & Dassargues, A., 2001. Carte hydrogéologique de Wallonie: 40/5-6 Chastre-Gembloux. Notice explicative. Technical report, Ministère de la Région Wallonne, Direction Générale des Ressources Naturelles et de l'Environnement.
Ruthy, I. & Dassargues, A., 2002, Carte hydrogéologique de Wallonie: 40/1-2 Wavre-Chaumont-Gixtoux. Notice explicative. Technical report, Ministère de la Région Wallone, Direction Générale des Ressources Naturelles et de l'Environnement.
Tidwell, V.C. & Wilson, J.L., 1999. Upscaling experiments conducted on a block of volcanic tuff: Results for a bimodal permeability distribution. Water Resources Research, 35(11), 3375-3387.
Tipping, R.G., Runkel, A.C., Alexander, J.E.C., Alexander, S.C. & Green, J.A., 2006. Evidence for hydraulic heterogeneity and anisotropy in the mostly carbonate Prairie du Chien Group, southeastern Minnesota, USA. Sedimentary Geology, 184(3-4), 305-330.
Van de Graaff, W.J.E. & Ealey, P.J., 1989. Geological modeling for simulation studies, AAPG Bulletin, 73(11), 1436-1444.
Van den Berg, E.H. & de Vries, J.J., 2003. Influence of grain fabric and lamination on the anisotropy of hydraulic conductivity in unconsolidated dune sands. Journal of Hydrology, 283, 244-266.
Zheng, C.M. & Gorelick, S.M., 2003. Analysis of solute transport in flow fields influenced by preferential flowpaths at the decimeter scale. Ground Water, 41(2), 142-155.