[en] In this paper, we consider the challenging problem of music recognition and present an effective machine learning based method using a feed-forward neural network for chord recognition. The method uses the known feature vector for automatic chord recognition called the Pitch Class Profile (PCP). Although the PCP vector only provides attributes corresponding to 12 semi-tone values, we show that it is adequate for chord recognition.
Part of our work also relates to the design of a database of chords. Our database is primarily designed for chords typical of Western Europe music. In particular, we have built a large dataset filled with recorded guitar chords under different acquisition conditions (instruments, microphones, etc), but also with samples obtained with other instruments. Our experiments establish a twofold result: (1) the PCP is well suited for describing chords in a machine learning context, and (2) the algorithm is also capable to recognize chords played with other instruments, even unknown from the training phase.
Research Center/Unit :
Intelsig
Disciplines :
Electrical & electronics engineering
Author, co-author :
Osmalsky, Julien ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Techniques du son et de l'image
Embrechts, Jean-Jacques ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Techniques du son et de l'image
Van Droogenbroeck, Marc ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Pierard, Sébastien ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications