seagrass; Posidonia oceanica; biomass; production; growth model; shading effect sensitivity; Bay of Calvi; Corsica; Mediterranean Sea
Abstract :
[en] Modelling of seagrasses can be an effective tool to assess factors regulating their growth. Growth and production model of Posidonia oceanica, the dominant submerged aquatic macrophyte occurring in the Bay of Calvi (Corsica, Ligurian Sea, Northwestern (NW) Mediterranean) was developed. The state variables are the above- and below-ground biomass of P oceanica, the epiphyte biomass, and the internal nitrogen concentration of the whole plant. Light intensity and water temperature are the forcing variables. The model reproduces successfully seasonal growth and production for each variable at various depths (10, 20 and 30 m). The model can simulate also a number of consecutive years. Sensitivity analysis of model's parameters showed that the maximum nitrogen quota n(max) rate is the most sensitive parameter in this model. The results simulations imply that light intensity is one of the most important abiotic factors, the diminution of which can cause an important reduction in seagrass density. (C) 2003 Elsevier B.V. All rights reserved.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Alcoverro, T., Duarte, C.M., Romero, J., 1995. Annual growth dynamics of Posidonia oceanica: contribution of large-scale versus local factors to seasonality. Mar. Ecol. Prog. Ser. 120, 203-210.
Alcoverro, T., Duarte, C.M., Romero, J., 1997a. The influence of herbivores on Posidonia oceanica epiphytes. Aquat. Bot. 56, 93-104.
Alcoverro, T., Romero, J., Duarte, C.M., Lopez, N.I., 1997b. Spatial and temporal variations in nutrient limitation of seagrass Posidonia oceanica growth in the NW Mediterranean. Mar. Ecol. Prog. Ser. 146, 155-161.
Alcoverro, T., Manzanera, M., Romero, J., 2000. Nutrient mass balance of the seagrass Posidonia oceanica (L.) Delile: the importance of nutrient retranslocation. Mar. Ecol. Prog. Ser. 194, 13-21.
Bach, H.K., 1993. A dynamic model describing the seasonal variations in growth and the distribution of eelgrass (Zostera marina L.) I. Model theory. Ecol. Model. 65, 31-50.
Bach, H.K., Jensen, K., Lyngby, J.J., 1997. Management of marine construction works using ecological modelling. Estuarine Coastal Shelf Sci. 44 (Suppl. A), 3-14.
Bay, D., 1984. A field study of the growth dynamics and productivity of Posidonia oceanica (L.) Dellile in Calvi Bay. Corsica. Aquat. Bot. 20, 43-64.
Belkhiria, S., 1992. Variation saisonnières et spéciation des différents stoks de carbone dans la frondaison de l'herbier de posidonie de la baie de la Revelata (Corse). Mémoire de licence. University of Liège, 56 pp.
Bocci, M., Coffaro, G., Bendoricchio, G., 1997. Modelling biomass and nutrient dynamics in eelgrass (Zostera marina L.): application to the lagoon of Venice (Italy) and Oresund (Denmark). Ecol. Model. 102, 67-80.
Borum, J., 1985. Development of epiphytic communities on eelgrass (Zostera marina) along a nutrient gradient in a Danish estuary. Mar. Biol. 87, 48-56.
Buia, M.C., Mazzella, L., 1991. Reproductive strategies of the Mediterranean seagrasses, Posidonia oceanica (L.) Delile, Cymodocea nodosa (Ucria) Aschers., and Zostera noltti Hornem. Aquat. Bot. 40, 343-362.
Bulthuis, D.A., 1987. Effect of temperature on photosynthesis and growth of seagrass. Aquat. Bot. 27, 27-40.
Chapelle, A., Ménesguen, A., Deslous-Paoli, J.M., Souchu, P., Mazouni, N., Vaquer, A., Millet, B., 2000. Modelling nitrogen, primary production and oxygen in a Mediterranean lagoon. Impact of oysters farming and inputs from the watershed. Ecol. Model. 127, 161-181.
Coffaro, G., Sfriso, A., 1997. Simulation model of Ulva rigidda growth in shallow water of the Lagoon of Venice. Ecol. Model. 102, 55-66.
Dalla Via, J., Sturmbauer, C., Schonweger, G., Sotz, E., Mathekowitsch, S., Stifter, M., Rieger, R., 1998. Light gradients and meadow structure in Posidonia oceanica, ecomorphological and functional correlates. Mar. Ecol. Prog. Ser. 163, 267-278.
Dauby, P., 1985. Dynamique et productivité de l'é cosystème planctonique du golf de Calvi-Corse. Ph.D. thesis, University of Liège, 288 pp.
Dauby, P., Bouquegneau, J.M., submitted. Carbon uptake by seagrass bed producers. Mar. Ecol. Prog. Ser.
Dauby, P., Bale, A.J., Bloomer, N., Canon, C., Ling, D.R., Norro, A., Robertson, J.E., Simon, A., Théate, J.M., Watson, A.J., Frankignoulle, M., 1995. Particle fluxes over a Mediterranean seagrass bed: a one year case study. Mar. Ecol. Prog. Ser. 126, 233-246.
Dennison, W.C., Aller, R.C., Alberte, R.S., 1987. Sediment ammonium availability and eelgrass (Zostera marina) growth. Mar. Biol. 94, 469-477.
Duarte, C.M., Chiscano, C.L., 1999. Seagrass biomass and production: a reassessment. Aquat. Bot. 65, 159-174.
Duarte, C.M., Agusta, S., Satta, M.P., 1998. Partitioning particulate light absorption: a budget for a Mediterranean bay. Limnol. Oceanogr. 43 (2), 236-244.
Elkalay, K., Skliris, N., Frangoulis, C., Goffart, A., Gobert, S., Lepoint, G., Hecq, J.-H., 2000. A model describing the P. oceanica growth. Biol. Mar. Medit. 7 (2), 47-50.
Erftemeijer, P.L.A., Stapel, J., 1999. Primary production of deep-water Halophila ovalis meadows. Aquat. Bot. 65, 71-82.
Gobert, S., 1993. Hétérogénéité de la structure de l'herbier de posidonies de la baie de Calvi: variation à court et à long terme. Master in Oceanology, University of Liège, 50 pp.
Gobert, S., Belkhiria, S., Dauby, P., Havelange, S., Soullard, M., Bouquegneau, J.M., 1995. Variations temporelles de la phynologie et de la composition biochimique de la phanerogame marine Posidonia oceanica en Baie de Calvi. Bull. Soc. R. Sci. Liège 64 (4/5), 263-284.
Goffart, A., 1992. Influence des contraintes hydrodynamiques sur la structure des communautés phytoplanctoniques du bassin Liguro-Provençal (secteur Corse). Ph.D. thesis, University of Liège, 163 pp.
Goffart, A., Hecq, J.-H., Legendre, L., in press. Changes in the development of the winter-spring phytoplankton bloom in the Bay of Calvi (Northwestern Mediterranean) over the last two decades: a response to the changing climate? Mar. Ecol. Prog. Ser.
Harlin, M.M., Thorne-Miller, B., 1981. Nutrient enrichment of seagrass beds in Rhode Island coastal lagoon. Mar. Biol. 65, 221-229.
Hemminga, M.A., 1998. The root/rhizome system of seagrasses: an asset and a burden. J. Sea Res. 39, 183-196.
Hemminga, M.A., Harrison, P.G., van Lent, F., 1991. The balance of nutrient losses and gains in seagrass meadowa. Mar. Ecol. Prog. Ser. 71, 85-95.
Iizumi, H., Hattori, A., 1982. Growth and organic production of eelgrass (Zostera Marina L.) in temperature waters of the pacific coast of Japan. III. The kinetics of nitrogen uptake. Aquat. Bot. 12, 245-256.
Kraemer, G.P., Mazzella, L., Alberte, R.S., 1997. Nitrogen assimilation and partitioning in the mediterranean seagrass Posidonia oceanica. Mar. Ecol. 18 (2), 175-188.
Lepoint, G., 2001. Compétition pour l'azote inorganique entre le pelagos et le benthos d'un milieu côtier oligotrophe. Effets sur la dynamique de l'écosystème. Ph.D. thesis, University of Liège, 199 pp.
Lepoint, G., Havelange, S., Gobert, S., Bouquegneau, J.M., 1999. Fauna versus flora contirbution to the leaf epiphytes biomass in a Posidonia oceanica seagrass bed (Revellata Bay, Corsica). Hydrobiologia 394, 63-67.
Lepoint, G., Millet, S., Dauby, P., Gobert, S., Bouquegneau, J.M., in press. An annual nitrogen budget of seagrass Posidonia oceanica as determined by in situ uptake experiments. Mar. Ecol. Prog. Ser.
Libes, M., Boudouresque, C.F., 1987. Uptake and long-distance transport of carbon in the marine phanerogam Posidonia oceanica. Mar. Ecol. Prog. Ser. 38, 177-186.
Lorenti, M., Mazzella, L., Buia, M.C., 1995. Light limitation of Posidonia oceanica (L.) Delile leaves and epiphytes at different depths. Rapports Comm. Int. Mediterranean 34, 34.
Madden, C.J., Kemp, W.M., 1996. Ecosystem model of an estuarine submersed plant community, calibration an simulation of eutrophication responses. Estuaries 19 (2B), 457-474.
Marba, N., Duarte, CM., Cebrian, J., Gallegos, M.E., Olesen, B., Sand-Jensens, K., 1996. Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline. Mar. Ecol. Prog. Ser. 137, 203-213.
Mariani-Colombo, P., Rascio, N., Cinelli, F., 1983. Posidonia oceanica (L.) Delile: a structural study of the photosynthetic apparatus. P.S.Z.N.I. Mar. Ecol. 4 (2), 133-145.
Mateo, M.A., Romero, J., 1997. Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Mar. Ecol. Prog. Ser. 151, 43-53.
Mazzella, L., Ott., J., 1984. Seasonal changes in some features of Posidonia oceanica (L.) Dellile leaves and epiphytes at different depths. In: Boudouresque, C.F., Grissac, A.J.D., Olivier, J. (Eds.), Proceedings of the International Workshop on Posidonia oceanica Beds. GIS Posidonie, Marseille, France, pp. 119-127.
Mazzella, L., Scipione, M.B., Buia, M.B., 1989. Spatio-temporel distribution of algal and animal communities in a Posidonia oceanica meadow. P.S.Z.N.I. Mar. Ecol. 10, 107-129.
Mazzella, L., Buia, M.C., Gambi, M.C., Lorenti, M., Russo, G.F., Scipione, M.B., Zupo, V., 1992. Plant-animal trophic relationships in the Posidonia oceanicaecosystem of the Mediterranean Sea: a review. In: John, D.M., Hawkins, S.J., Price, J.H. (Eds.), Plant-Animal Interactions in the Marine Benthos. Clarendon Press, Oxford, pp. 165-187.
Mesureur, B., 1981. Un aspect écologique de l'herbier de posidonies dans la baie de Calvi: productions primaire et primaire et secondaire de la couverture épiphytique. Mémoire de licence. University of Liège, Belgique, 55 pp.
Modigh, M., Lorenti, M., Mazzella, L., 1998. Carbon assimilation in Posidonia oceanica: biotic determinants. Bot. Mar. 41, 249-256.
Oshima, Y., Kishi, M.J., Sugimoto, T., 1999. Evaluation of the nutrient budget in a seagrass bed. Ecol. Model. 115, 19-33.
Orth, R.J., 1977. Effect of nutrient enrichment on the growth of the eelgrass Zostera marina in the Chesapeake Bay, Virginia, USA. Mar. Biol. 44, 187-194.
Orth, R.J., Van Montfrans, J., 1984. Epiphytes-seagrass relationships with an emphasis on the role of micrograzing: a review. Aquat. Bot. 18, 43-69.
Ott, J.A., 1979. Persistence of a seasonal growth rhythm in Posidonia oceanica (L.) Delile under constant conditions of temperature and illumination. Mar. Biol. Lett. 1, 99-104.
Pergent, G., Romero, J., Pergent-Martini, M., Mateo, A., Boudouresque, C.F., 1994. Primary production, stocks and fluxes in the Mediterranean seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser. 106, 139-146.
Pirc, H., 1985a. Seasonal aspects of photosynthesis in Posidonia oceanica: influence of depth, temperature and light intensity. Aquat. Bot. 26, 203-212.
Pirc, H., 1985b. Growth dynamics in Posidonia oceanica (L.) Delile. P.S.Z.N.I. Mar. Ecol. 6, 141-165.
Romero, J., Pérez, M., Mateo, M.A., Sala, E., 1994. The belowgroud organs of the Mediterranean seagrass Posidonia oceanica as a biogeochemical sink. Aquat. Bot. 47, 13-19.
Romero, J., Perez, M., Alcoverro, T., Mateo, M.A., Lizaso, J.L.S., 1998. Production ecology of Posidonia oceanica (L.) Dellile meadows in Nueva Tabarca marine reserve: growth, biomass and nutrient stocks along a bathymetric gradient. Oecol. Aquat. 11, 111-121.
Ruiz, J.M., Romero, J., 2001. Effects of in situ experimental shading on the Mediterranean seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser. 215, 107-120.
Short, F.T., 1980. A simulation model of seagrass production system. In: Phillips, R.C., McRoy, C.P. (Eds.), Handbook of Seagrass Biology: An Ecosystem Perspective. Garland STPM Press, New York, pp. 275-295.
Short, F.T., Neckles, H.A., 1999. The effects of global climate change on seagrasses. Aquat. Bot. 63, 169-196.
Touchette, B.W., Burkholder, J.M., 2000. Review of nitrogen and phosphorus metabolism in seagrasses. J. Exp. Mar. Bio. Ecol. 250, 133-167.
Verhagen, J.H.G., Nienhuis, P.H., 1983. A simulation model of production, seasonal changes in biomass and distribution of eelgrass (Zostera marina) in lake Grevelingen. Mar. Ecol. Program. Ser. 10, 187-195.
Wetzel, R., Neckles, H.A., 1986. A model of Zostera marina L. photosynthesis and growth: simulated effects of the selected physical-chemical variables and biological interactions. Aquat. Bot. 26, 307-323.
Williams, S.L., Ruckelshaus, M.H., 1983. Effect of nitrogen availability in a natural and herbivory on eelgrass (Zosetera marina) and epiphytes. Ecology 74, 904-918.
Zimmerman, R.C., Smith, R.D., Alberte, R.S., 1987. Is growth of eelgrass nitrogen limited? A numerical simulation of the effect of light and nitrogen on the growth dynamics of Zostera marina. Mar. Ecol. Prog. Ser. 41, 167-176.
Zimmerman, R.C., Cabello-Pasini, A., Alberte, R.S., 1994. Modelling daily production of aquatic macrophytes from irradiance measurements: a comparative analysis. Mar. Ecol. Prog. Ser. 114, 185-196.
Zupo, V., Buia, M.C., Mazzella, L., 1997. A production model for Posidonia oceanica based on temperature. Estuarine Coastal Shelf Sci. 44, 483-492.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.