Abstract :
[en] An increasing number of investors is looking at algae as a viable source of biofuels, beside Q3 cultivation for human/animal feeding or to extract high-value chemicals and pharmaceuticals. However, present biomass productivities are far below theoretical estimations implying that a large part of the available photosynthetically active radiation is not used in photosynthesis. Light utilisation inefficiency and rapid light attenuation within a mass culture due to high pigment optical density of wild type strains have been proposed as major limiting factors reducing solar-to-biomass conversion efficiency. Analysis of growth yields of mutants with reduced light-harvesting antennae and/or reduced overall pigment concentration
per cell, generated by either mutagenesis or genetic engineering, could help understanding limiting factors for biomass accumulation in photobioreactor. Meanwhile, studies on photo-acclimation can provide additional information on the average status of algal cells in a photobioreactor to be used in modellingbased predictions. Identifying limiting factors in solar-to-biomass conversion efficiency is the first step for planning strategies of genetic improvement and domestication of algae to finally fill the gap between theoretical and industrial photosynthetic productivity.
Scopus citations®
without self-citations
67