Alvarez-Anorve, L.I., Calcagno, M.L., Plumbridge, J., Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates (2005) J. Bacteriol., 187, pp. 2974-2982
Bernheim, N.J., Dobrogosz, W.J., Amino sugar sensitivity in Escherichia coli mutants unable to grow on N-acetylglucosamine (1970) J. Bacteriol., 101, pp. 384-391
Bibb, M.J., Regulation of secondary metabolism in streptomycetes (2005) Curr. Opin. Microbiol., 8, pp. 208-215
Birko, Z., Lack of A-factor production induces the expression of nutrient scavenging and stress-related proteins in Streptomyces griseus (2009) Mol. Cell. Proteomics, 8, pp. 2396-2403
Bruckner, R., Titgemeyer, F., Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization (2002) FEMS Microbiol. Lett., 209, pp. 141-148
Calcagno, M., Campos, P.J., Mulliert, G., Suastegui, J., Purification, molecular and kinetic properties of glucosamine-6-phosphate isomerase (deaminase) from Escherichia coli (1984) Biochim. Biophys. Acta, 787, pp. 165-173
Chater, K.F., Losick, R., Mycelial life style of Streptomyces coelicolor A3(2) and its relatives (1997) Bacteria as multicellular organisms, pp. 149-182. , J. A. Shapiro and M. Dworkin (ed), Oxford University Press, New York, NY
Cohen-Kupiec, R., Chet, I., The molecular biology of chitin digestion (1998) Curr. Opin. Biotechnol., 9, pp. 270-277
Colson, S., Conserved cis-acting elements upstream of genes composing the chitinolytic system of streptomycetes are DasR-responsive elements (2007) J. Mol. Microbiol. Biotechnol., 12, pp. 60-66
Colson, S., The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor (2008) Microbiology, 154, pp. 373-382
Fedoryshyn, M., Welle, E., Bechthold, A., Luzhetskyy, A., Functional expression of the Cre recombinase in actinomycetes (2008) Appl. Microbiol. Biotechnol., 78, pp. 1065-1070
Flärdh, K., Growth polarity and cell division in Streptomyces (2003) Curr. Opin. Microbiol., 6, pp. 564-571
Flärdh, K., Buttner, M.J., Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium (2009) Nat. Rev. Microbiol., 7, pp. 36-49
Gray, D.I., Gooday, G.W., Prosser, J.I., Apical hyphal extension in Streptomyces coelicolor A3(2) (1990) J. Gen. Microbiol., 136, pp. 1077-1084
Hiard, S., PREDetector: a new tool to identify regulatory elements in bacterial genomes (2007) Biochem. Biophys. Res. Commun., 357, pp. 861-864
Jolly, L., Reaction mechanism of phosphoglucosamine mutase from Escherichia coli (1999) Eur. J. Biochem., 262, pp. 202-210
Jolly, L., Pompeo, F., van Heijenoort, J., Fassy, F., Mengin-Lecreulx, D., Autophosphorylation of phosphoglucosamine mutase from Escherichia coli (2000) J. Bacteriol., 182, pp. 1280-1285
Jolly, L., The femR315 gene from Staphylococcus aureus, the interruption of which results in reduced methicillin resistance, encodes a phosphoglucosamine mutase (1997) J. Bacteriol., 179, pp. 5321-5325
Khodakaramian, G., Expression of Cre recombinase during transient phage infection permits efficient marker removal in Streptomyces (2006) Nucleic Acids Res., 34, pp. e20
Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., Hopwood, D.A., (2000) Practical Streptomyces genetics, , The John Innes Foundation, Norwich, United Kingdom
Komatsuzawa, H., The gate controlling cell wall synthesis in Staphylococcus aureus (2004) Mol. Microbiol., 53, pp. 1221-1231
Larson, J.L., Hershberger, C.L., The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA (1986) Plasmid, 15, pp. 199-209
Mahr, K., Glucose kinase of Streptomyces coelicolor A3(2): large-scale purification and biochemical analysis (2000) Antonie Van Leeuwenhoek, 78, pp. 253-261
Mark, B.L., Structural and functional characterization of Streptomyces plicatus beta-N-acetylhexosaminidase by comparative molecular modeling and site-directed mutagenesis (1998) J. Biol. Chem., 273, pp. 19618-19624
Mengin-Lecreulx, D., van Heijenoort, J., Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis (1994) J. Bacteriol., 176, pp. 5788-5795
Nazari, B., High expression levels of chitinase genes in Streptomyces coelicolor A3(2) grown in soil (2011) FEMS Microbiol. Ecol., 77, pp. 623-635
Nothaft, H., The phosphotransferase system of Streptomyces coelicolor is biased for N-acetylglucosamine metabolism (2003) J. Bacteriol., 185, pp. 7019-7023
Nothaft, H., The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control (2010) Mol. Microbiol., 75, pp. 1133-1144
Plumbridge, J., An alternative route for recycling of N-acetylglucosamine from peptidoglycan involves the N-acetylglucosamine phosphotransferase system in Escherichia coli (2009) J. Bacteriol., 191, pp. 5641-5647
Plumbridge, J., Vimr, E., Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli (1999) J. Bacteriol., 181, pp. 47-54
Plumbridge, J.A., Repression and induction of the nag regulon of Escherichia coli K-12: the roles of nagC and nagA in maintenance of the uninduced state (1991) Mol. Microbiol., 5, pp. 2053-2062
Rigali, S., The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development (2006) Mol. Microbiol., 61, pp. 1237-1251
Rigali, S., Extending the classification of bacterial transcription factors beyond the helix-turn-helix motif as an alternative approach to discover new cis/trans relationships (2004) Nucleic Acids Res., 32, pp. 3418-3426
Rigali, S., Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces (2008) EMBO Rep., 9, pp. 670-675
Saito, A., The dasABC gene cluster, adjacent to dasR, encodes a novel ABC transporter for the uptake of N, N=-diacetylchitobiose in Streptomyces coelicolor A3(2) (2007) Appl. Environ. Microbiol., 73, pp. 3000-3008
Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular cloning: a laboratory manual, , 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
Schrempf, H., Recognition and degradation of chitin by streptomycetes (2001) Antonie Van Leeuwenhoek, 79, pp. 285-289
Seo, J.W., Ohnishi, Y., Hirata, A., Horinouchi, S., ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus (2002) J. Bacteriol., 184, pp. 91-103
Titgemeyer, F., Reizer, J., Reizer, A., Saier Jr., M.H., Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria (1994) Microbiology, 140, pp. 2349-2354
Tsujibo, H., Cloning, characterization and expression of beta-N-acetylglucosaminidase gene from Streptomyces thermoviolaceus OPC-520(1) (1998) Biochim. Biophys. Acta, 1425, pp. 437-440
van Wezel, G.P., Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering (2006) Appl. Environ. Microbiol., 72, pp. 5283-5288
van Wezel, G.P., GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2) (2005) Mol. Microbiol., 55, pp. 624-636
van Wezel, G.P., McDowall, K.J., The regulation of the secondary metabolism of Streptomyces: new links and experimental advances (2011) Nat. Prod. Rep., 28, pp. 1311-1333
van Wezel, G.P., McKenzie, N.L., Nodwell, J.R., Applying the genetics of secondary metabolism in model actinomycetes to the discovery of new antibiotics (2009) Methods Enzymol., 458, pp. 117-141
Vara, J., Lewandowska-Skarbek, M., Wang, Y.G., Donadio, S., Hutchinson, C.R., Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus) (1989) J. Bacteriol., 171, pp. 5872-5881
Vogler, A.P., Lengeler, J.W., Analysis of the nag regulon from Escherichia coli K12 and Klebsiella pneumoniae and of its regulation (1989) Mol. Gen. Genet., 219, pp. 97-105
Wang, F., Xiao, X., Saito, A., Schrempf, H., Streptomyces olivaceoviridis possesses a phosphotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N-acetylglucosamine (2002) Mol. Genet. Genomics, 268, pp. 344-351
White, R.J., Control of amino sugar metabolism in Escherichia coli and isolation of mutants unable to degrade amino sugars (1968) Biochem. J., 106, pp. 847-858
Xiao, X., The novel Streptomyces olivaceoviridis ABC transporter Ngc mediates uptake of N-acetylglucosamine and N, N=-diacetylchitobiose (2002) Mol. Genet. Genomics, 267, pp. 429-439
Yadav, V., N-Acetylglucosamine 6-phosphate deacetylase (NagA) is required for N-acetylglucosamine assimilation in Gluconacetobacter xylinus (2011) PLoS One, 6, pp. e18099