[en] We report first-principles characterization of the structural and electronic properties of (SrTiO3)5/(SrRuO3)1 superlattices. We show that the system exhibits a spin-polarized two-dimensional electron gas, extremely confined to the 4d orbitals of Ru in the SrRuO3 layer. Every interface in the superlattice behaves as a minority-spin half-metal ferromagnet, with a magnetic moment of µ = 2.0µB/SrRuO3 unit. The shape of the electronic density of states, half-metallicity, and magnetism are explained in terms of a simplified tight-binding model, considering only the t2g orbitals plus (i) the bidimensionality of the system and (ii) strong electron correlations.
Disciplines :
Physics
Author, co-author :
Verissimo-Alves, M.
Garcia-Fernandez, P.
Bilc, Daniel ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Ghosez, Philippe ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Junquera, J.
Language :
English
Title :
Highly Confined Spin-Polarized Two-Dimensional Electron Gas in SrTiO3/SrRuO3 Superlattices
Publication date :
2012
Journal title :
Physical Review Letters
ISSN :
0031-9007
eISSN :
1079-7114
Publisher :
American Physical Society, Ridge, United States - New York
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.