Article (Scientific journals)
Carrying capacity of stainless steel columns in the low slenderness range.
Rossi, Barbara; Rasmussen, Kim J.R.
2013In Journal of Structural Engineering
Peer reviewed
 

Files


Full Text
JRNSTENG-S-12-00087.pdf
Author preprint (1.47 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Stainless steel; Thin-walled sections; Axial compression; Direct Strength Method; Design
Abstract :
[en] The strength of thin-walled stainless steel columns has been investigated extensively over the past few years. In European standards, the concept of section classification for determining the cross-section capacity is used. In this system, for Class 4 cross-sections, the Effective Width Method (EWM) must be used to account for the effect of local buckling. Because of the complexity and limitations of this method, other methods have been developed, such as the Direct Strength Method (DSM) for cold-formed thin-walled profiles and the Continuous Strength Method (CSM), initially established for members made of nonlinear metallic materials. In the CSM, to take advantage of strain hardening, a deformation-based design approach employing a continuous relationship between the cross-sectional slenderness and the cross-sectional deformation capacity is used. To a large extent, the CSM yield accurate predictions, especially in the low slenderness range where the current DSM design procedures for members submitted to pure compression tends to produce conservative predictions, for materials with pronounced strain hardening such as stainless steel alloys. The present paper presents an extension of the traditional DSM which provides accurate design strength predictions in the low slenderness range for stainless steel thin-walled section columns failing by distortional, local and overall buckling. It contains practical information concerning the reference experimental data and draws conclusions about the justification of the proposed analytical formula. The paper is divided into three main parts: the description of the database, the establishment of the design model and a reliability analysis of the method.
Disciplines :
Civil engineering
Author, co-author :
Rossi, Barbara ;  Université de Liège - ULiège > Département Argenco : Secteur MS2F > Adéquat. struct. aux exig. de fonct.& perfor. techn.-écon.
Rasmussen, Kim J.R.
Language :
English
Title :
Carrying capacity of stainless steel columns in the low slenderness range.
Publication date :
2013
Journal title :
Journal of Structural Engineering
ISSN :
0733-9445
eISSN :
1943-541X
Publisher :
American Society of Civil Engineers, Reston, United States - Virginia
Peer reviewed :
Peer reviewed
Available on ORBi :
since 14 March 2012

Statistics


Number of views
167 (30 by ULiège)
Number of downloads
6 (6 by ULiège)

Scopus citations®
 
33
Scopus citations®
without self-citations
25
OpenCitations
 
22
OpenAlex citations
 
31

Bibliography


Similar publications



Contact ORBi