Article (Scientific journals)
Eddy Currents and Corner Singularities
Buret, François; Dauge, Monique; Dular, Patrick et al.
2012In IEEE Transactions on Magnetics, 48 (2), p. 679-682
Peer Reviewed verified by ORBi
 

Files


Full Text
J.12.4-TMAG-RPerrussel-EddyCurrentsAndCornerSingularities.pdf
Publisher postprint (446.31 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
asymptotic expansion; eddy currents; singularity
Abstract :
[en] Eddy current problems are addressed in a bidimensional setting where the conducting medium is non-magnetic and has a corner singularity. For any fixed parameter linked to the skin depth for a plane interface, we show that the flux density is bounded near the corner unlike the perfect conducting case. Then as goes to zero, the first two terms of a multiscale expansion of the magnetic potential are introduced to tackle the magneto-harmonic problem. The heuristics of the method are given and numerical computations illustrate the obtained accuracy.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Buret, François;  Université de Lyon > Laboratoire Ampère
Dauge, Monique
Dular, Patrick ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Krähenbühl, Laurent;  Université de Lyon > Laboratoire Ampère
Péron, Victor;  INRIA Bordeaux-Sud-Ouest > LMAP
Perrussel, Ronan;  Université de Toulouse > LAPLACE
Poignard, Clair;  Université Bordeaux > IMB
Voyer, Damien;  Université de Lyon > Laboratoire Ampère
Language :
English
Title :
Eddy Currents and Corner Singularities
Publication date :
February 2012
Journal title :
IEEE Transactions on Magnetics
ISSN :
0018-9464
eISSN :
1941-0069
Publisher :
IEEE, Piscataway, United States - New Jersey
Volume :
48
Issue :
2
Pages :
679-682
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 09 March 2012

Statistics


Number of views
88 (5 by ULiège)
Number of downloads
4 (3 by ULiège)

Scopus citations®
 
5
Scopus citations®
without self-citations
1
OpenCitations
 
3
OpenAlex citations
 
6

Bibliography


Similar publications



Contact ORBi