[en] Eddy current problems are addressed in a bidimensional setting where the conducting medium is non-magnetic and has a corner singularity. For any fixed parameter linked to the skin depth for a plane interface, we show that the flux density is bounded near the corner unlike the perfect conducting case. Then as goes to zero, the first two terms of a multiscale expansion of the magnetic potential are introduced to tackle the magneto-harmonic problem. The heuristics of the method are given and numerical computations illustrate the obtained accuracy.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Buret, François; Université de Lyon > Laboratoire Ampère
Dauge, Monique
Dular, Patrick ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Krähenbühl, Laurent; Université de Lyon > Laboratoire Ampère
Péron, Victor; INRIA Bordeaux-Sud-Ouest > LMAP
Perrussel, Ronan; Université de Toulouse > LAPLACE
Poignard, Clair; Université Bordeaux > IMB
Voyer, Damien; Université de Lyon > Laboratoire Ampère
K. Schmidt, O. Sterz, and R. Hiptmair, "Estimating the eddy-current modelling error," IEEE Trans. Magn., vol. 44, no. 6, pp. 686-689, Jun. 2008.
G. Caloz, M. Dauge, and V. Péron, "Uniform estimates for transmission problems with high contrast in heat conduction and electromagnetism," J. Math. Anal. Appl., vol. 370, no. 2, pp. 555-572, 2010.
S. Yuferev, L. Proekt, and N. Ida, "Surface impedance boundary conditions near corner and edges: Rigorous consideration," IEEE Trans. Magn., vol. 37, no. 5, pp. 3465-3468, Nov. 2001.
E. Deeley, "Surface impedance near edges and corners in three-dimensional media," IEEE Trans. Magn., vol. 26, no. 2, pp. 712-714, Mar. 1990.
V. A. Kondratiev, "Boundary value problems for elliptic equations in domains with conical or angular points," Trudy Moskov. Mat. Obv sv c., vol. 16, pp. 209-292, 1967.
I. Ciuperca, R. Perrussel, and C. Poignard, "Influence of a rough thin layer on the steady-state potential," IEEE Trans. Magn., vol. 46, no. 8, pp. 2823-2826, Aug. 2010.
L. Krähenbühl et al., "Numerical treatment of rounded and sharp corners in the modeling of 2D electrostatic fields," JMOe vol. 10, no. 1, pp. 66-81, 2011 [Online]. Available: http://www.jmoe.org