Article (Scientific journals)
On a Lie Algebraic Characterization of Vector Bundles
Lecomte, Pierre; Leuther, Thomas; Zihindula Mushengezi, Elie
2012In Symmetry, Integrability and Geometry: Methods and Applications
Peer Reviewed verified by ORBi
 

Files


Full Text
sigma12-004.pdf
Publisher postprint (330.52 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
vector bundle; algebraic characterization; differential operators
Abstract :
[en] We prove that a vector bundle E -> M is characterized by the Lie algebra generated by all differential operators on E which are eigenvectors of the Lie derivative in the direction of the Euler vector field. Our result is of Pursell-Shanks type but it is remarkable in the sense that it is the whole f ibration that is characterized here. The proof relies on a theorem of [Lecomte P., J. Math. Pures Appl. (9) 60 (1981), 229{239] and inherits the same hypotheses. In particular, our characterization holds only for vector bundles of rank greater than 1.
Disciplines :
Mathematics
Author, co-author :
Lecomte, Pierre ;  Université de Liège - ULiège > Département de mathématique > Géométrie et théorie des algorithmes
Leuther, Thomas ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Dép. d'électric., électron. et informat. (Inst.Montefiore)
Zihindula Mushengezi, Elie ;  Université de Liège - ULiège > Département de mathématique > Géométrie et théorie des algorithmes
Language :
English
Title :
On a Lie Algebraic Characterization of Vector Bundles
Publication date :
26 January 2012
Journal title :
Symmetry, Integrability and Geometry: Methods and Applications
eISSN :
1815-0659
Publisher :
Department of Applied Research, Institute of Mathematics of National Academy of Sciences of Ukraine, Kiev, Ukraine
Special issue title :
SIGMA 8 (2012)
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 26 February 2012

Statistics


Number of views
144 (16 by ULiège)
Number of downloads
137 (9 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi