ab initio calculations; Green's function methods; molecular electronics
Abstract :
[en] We analyze how functionality could be obtained within single-molecule devices by using a combination of non-equilibrium Green's functions and ab initio calculations to study the inelastic transport properties of single-molecule junctions. First, we apply a full non-equilibrium Green's function technique to a model system with electron-vibration coupling. We show that the features in the inelastic electron tunneling spectra (IETS) of the molecular junctions are virtually independent of the nature of the molecule-lead contacts. Since the contacts are not easily reproducible from one device to another, this is a very useful property. The IETS signal is much more robust versus modifications at the contacts and hence can be used to build functional nanodevices. Second, we consider a realistic model of a organic conjugated molecule. We use ab initio calculations to study how the vibronic properties of the molecule can be controlled by an external electric field which acts as a gate voltage. The control, through the gate voltage, of the vibron frequencies and (more importantly) of the electron-vibron coupling enables the construction of functionality: nonlinear amplification and/or switching is obtained from the IETS signal within a single-molecule device.
Disciplines :
Physics
Author, co-author :
Dash, Louise K
Ness, Hervé
Verstraete, Matthieu ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Godby, Rex W
Language :
English
Title :
Functionality in single-molecule devices: Model calculations and applications of the inelastic electron tunneling signal in molecular junctions
Publication date :
2012
Journal title :
Journal of Chemical Physics
ISSN :
0021-9606
eISSN :
1089-7690
Publisher :
American Institute of Physics, New York, United States - New York
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aviram, A., Ratner, M., (1974) Chem. Phys. Lett., 29, p. 277. , 10.1016/0009-2614(74)85031-1
Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., Tour, J.M., Conductance of a molecular junction (1997) Science, 278 (5336), pp. 252-254. , DOI 10.1126/science.278.5336.252
Reichert, J., Weber, H.B., Mayor, M., Löhneysen, H.V., (2003) Appl. Phys. Lett., 82, p. 4137. , 10.1063/1.1574844
Kushmerick, J.G., Lazorcik, J., Patterson, C.H., Shashidnar, R., Seferos, D.S., Bazan, G.C., Vibronic contributions to charge transport across molecular junctions (2004) Nano Letters, 4 (4), pp. 639-642. , DOI 10.1021/nl049871n
Cui, X.D., Primak, A., Zarate, X., Tomfohr, J., Sankey, O.F., Moore, A.L., Moore, T.A., Lindsay, S.M., Reproducible measurement of single-molecule conductivity (2001) Science, 294 (5542), pp. 571-574. , DOI 10.1126/science.1064354
Venkataraman, L., Klare, J.E., Tam, I.W., Nuckolls, C., Hybertsen, M.S., Steigerwald, M.L., (2006) Nano Lett., 6, p. 458. , 10.1021/nl052373+
Baheti, K., Malen, J.A., Doak, P., Reddy, P., Jang, S.-Y., Tilley, T.D., Majumdar, A., Segalman, R.A., Probing the chemistry of molecular heterojunctions using thermoelectricity (2008) Nano Letters, 8 (2), pp. 715-719. , DOI 10.1021/nl072738l
Dellangela, M., Kladnik, G., Cossaro, A., Verdini, A., Kamenetska, M., Tamblyn, I., Quek, S.Y., Venkataraman, L., (2010) Nano Lett., 10, p. 2470. , 10.1021/nl100817h
Hipps, K.W., Mazur, U., (1993) J. Phys. Chem., 97, p. 7803. , 10.1021/j100132a004
Liu, N., Pradhan, N.A., Ho, W., (2004) J. Chem. Phys., 120, p. 11371. , 10.1063/1.1765095
Yu, L.H., Keane, Z.K., Ciszek, J.W., Cheng, L., Stewart, M.P., Tour, J.M., Natelson, D., Inelastic electron tunneling via molecular vibrations in single-molecule transistors (2004) Physical Review Letters, 93 (26), pp. 2668021-2668024. , DOI 10.1103/PhysRevLett.93.266802, 266802
Wang, W., Lee, T., Kretzschmar, I., Reed, M.A., Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer (2004) Nano Letters, 4 (4), pp. 643-646. , DOI 10.1021/nl049870v
Yu, L.H., Zangmeister, C.D., Kushmerick, J.G., Structural contributions to charge transport across Ni-octanedithiol multilayer junctions (2006) Nano Letters, 6 (11), pp. 2515-2519. , DOI 10.1021/nl061867j
Troisi, A., Ratner, M.A., Molecular signatures in the transport properties of molecular wire junctions: What makes a junction "molecular"? (2006) Small, 2 (2), pp. 172-181. , DOI 10.1002/smll.200500201
Beebe, J.M., Moore, H.J., Lee, T.R., Kushmerick, J.G., Vibronic coupling in semifluorinated alkanethiol junctions: Implications for selection rules in inelastic electron tunneling spectroscopy (2007) Nano Letters, 7 (5), pp. 1364-1368. , DOI 10.1021/nl070460r
Okabayashi, N., Konda, Y., Komeda, T., Inelastic electron tunneling spectroscopy of an alkanethiol self-assembled monolayer using scanning tunneling microscopy (2008) Physical Review Letters, 100 (21), p. 217801. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.100.217801&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.100.217801
Kim, Y., Song, H., Strigl, F., Pernau, H.-F., Lee, T., Scheer, E., (2011) Phys. Rev. Lett., 106, p. 196804. , 10.1103/PhysRevLett.106.196804
Song, H., Kim, Y., Jang, Y.H., Jeong, H., Reed, M.A., Lee, T., (2009) Nature (London), 462, p. 1039. , 10.1038/nature08639
Hirose, K., Tsukada, M., (1994) Phys. Rev. Lett., 73, p. 150. , 10.1103/PhysRevLett.73.150
Di Ventra, M., Pantelides, S., Lang, N., (2000) Phys. Rev. Lett., 84, p. 979. , 10.1103/PhysRevLett.84.979
Nardelli, M., Fattebert, J.-L., Bernholc, J., (2001) Phys. Rev. B, 64, p. 245423. , 10.1103/PhysRevB.64.245423
Brandbyge, M., Mozos, J.-L., Ordejn, P., Taylor, J., Stokbro, K., (2002) Phys. Rev. B, 65, p. 165401. , 10.1103/PhysRevB.65.165401
Gutierrez, R., Fagas, G., Cuniberti, G., Grossmann, F., Schmidt, R., Richter, K., (2002) Phys. Rev. B, 65, p. 113410. , 10.1103/PhysRevB.65.113410
Frauenheim, T., Seifert, G., Elstner, M., Niehaus, T., Kohler, C., Amkreutz, M., Sternberg, M., Suhai, S., Atomistic simulations of complex materials: Ground-state and excited-state properties (2002) Journal of Physics Condensed Matter, 14 (11), pp. 3015-3047. , DOI 10.1088/0953-8984/14/11/313, PII S0953898402298422
Xue, Y., Ratner, M., (2003) Phys. Rev. B, 68, p. 115406. , 10.1103/PhysRevB.68.115406
Louis, E., Vergés, J.A., Palacios, J.J., Pérez-Jiménez, A.J., Sanfabin, E., (2003) Phys. Rev. B, 67, p. 155321. , 10.1103/PhysRevB.67.155321
Thygesen, K., Bollinger, M., Jacobsen, K., (2003) Phys. Rev. B, 67, p. 115404. , 10.1103/PhysRevB.67.115404
Garcia-Suarez, V.M., Rocha, A.R., Bailey, S.W., Lambert, C.J., Sanvito, S., Ferrer, J., Single-channel conductance of H2 molecules attached to platinum or palladium electrodes (2005) Physical Review B - Condensed Matter and Materials Physics, 72 (4), pp. 1-6. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRB:72, DOI 10.1103/PhysRevB.72.045437, 045437
Ghosh, A.W., Rakshit, T., Datta, S., Gating of a molecular transistor: Electrostatic and conformational (2004) Nano Letters, 4 (4), pp. 565-568. , DOI 10.1021/nl035109u
Zahid, F., Paulsson, M., Polizzi, E., Ghosh, A.W., Siddiqui, L., Datta, S., A self-consistent transport model for molecular conduction based on extended Hückel theory with full three-dimensional electrostatics (2005) Journal of Chemical Physics, 123 (6), pp. 1-10. , DOI 10.1063/1.1961289, 064707
Vasudevan, S., Walczak, K., Ghosh, A.W., (2010) Phys. Rev. B, 82, p. 085324. , 10.1103/PhysRevB.82.085324
Dash, L.K., Ness, H., Godby, R.W., (2010) J. Chem. Phys., 132, p. 104113. , 10.1063/1.3339390
Frederiksen, T., Brandbyge, M., Lorente, N., Jauho, A.-P., Inelastic scattering and local heating in atomic gold wires (2004) Physical Review Letters, 93 (25), pp. 2566011-2566014. , DOI 10.1103/PhysRevLett.93.256601, 256601
Galperin, M., Ratner, M.A., Nitzan, A., Inelastic electron tunneling spectroscopy in molecular junctions: Peaks and dips (2004) Journal of Chemical Physics, 121 (23), pp. 11965-11979. , DOI 10.1063/1.1814076, 15
Pecchia, A., Di Carlo, A., Atomistic theory of transport in organic and inorganic nanostructures (2004) Reports on Progress in Physics, 67 (8), pp. 1497-1561. , DOI 10.1088/0034-4885/67/8/R04, PII S0034488504367618
Ryndyk, D.A., Hartung, M., Cuniberti, G., Nonequilibrium molecular vibrons: An approach based on the nonequilibrium Green function technique and the self-consistent Born approximation (2006) Physical Review B - Condensed Matter and Materials Physics, 73 (4), pp. 1-5. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevB.73.045420&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevB.73.045420, 045420
Sergueev, N., Roubtsov, D., Guo, H., Ab initio analysis of electron-phonon coupling in molecular devices (2005) Physical Review Letters, 95 (14), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRL:95, DOI 10.1103/PhysRevLett.95.146803, 146803
Viljas, J.K., Cuevas, J.C., Pauly, F., Hafner, M., Electron-vibration interaction in transport through atomic gold wires (2005) Physical Review B - Condensed Matter and Materials Physics, 72 (24), pp. 1-18. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRB:72, DOI 10.1103/PhysRevB.72.245415, 245415
Yamamoto, T., Watanabe, K., Watanabe, S., Electronic transport in fullerene C20 bridge assisted by molecular vibrations (2005) Physical Review Letters, 95 (6), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRL:95, DOI 10.1103/PhysRevLett.95.065501, 065501
Cresti, A., Grosso, G., Pastori Parravicini, G., Electronic conductance of one-dimensional chains with phonon dephasing disorder (2006) Journal of Physics Condensed Matter, 18 (44), pp. 10059-10073. , DOI 10.1088/0953-8984/18/44/006, PII S0953898406301099, 006
Kula, M., Jiang, J., Luo, Y., Probing molecule-metal bonding in molecular junctions by inelastic electron tunneling spectroscopy (2006) Nano Letters, 6 (8), pp. 1693-1698. , DOI 10.1021/nl060951w
De La Vega, L., Martin-Rodero, A., Agrait, N., Yeyati, A.L., Universal features of electron-phonon interactions in atomic wires (2006) Physical Review B - Condensed Matter and Materials Physics, 73 (7), pp. 1-5. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevB.73.075428&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevB.73.075428, 075428
Troisi, A., Ratner, M.A., Molecular transport junctions: Propensity rules for inelastic electron tunneling spectra (2006) Nano Letters, 6 (8), pp. 1784-1788. , DOI 10.1021/nl0609394
Galperin, M., Ratner, M.A., Nitzan, A., Molecular transport junctions: Vibrational effects (2007) Journal of Physics Condensed Matter, 19 (10), p. 103201. , DOI 10.1088/0953-8984/19/10/103201, PII S0953898407946408
Troisi, A., Beebe, J.M., Picraux, L.B., Van Zee, R.D., Stewart, D.R., Ratner, M.A., Kushmerick, J.G., Tracing electronic pathways in molecules by using inelastic tunneling spectroscopy (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (36), pp. 14255-14259. , http://www.pnas.org/cgi/reprint/104/36/14255, DOI 10.1073/pnas.0704208104
Troisi, A., Ratner, M.A., Modeling the inelastic electron tunneling spectra of molecular wire junctions (2005) Physical Review B - Condensed Matter and Materials Physics, 72 (3), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRB:72, DOI 10.1103/PhysRevB.72.033408, 033408
Hahn, J.R., Ho, W., (2001) Phys. Rev. Lett., 87, p. 196102. , 10.1103/PhysRevLett.87.196102
Tal, O., Krieger, M., Leerink, B., Van Ruitenbeek, J.M., Electron-vibration interaction in single-molecule junctions: From contact to tunneling regimes (2008) Physical Review Letters, 100 (19), p. 196804. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.100.196804&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.100.196804
Vitali, L., Ohmann, R., Kern, K., Garcia-Lekue, A., Frederiksen, T., Sanchez-Portal, D., Arnau, A., (2010) Nano Lett., 10, p. 657. , 10.1021/nl903760k
Garcia-Lekue, A., Sanchez-Portal, D., Arnau, A., Frederiksen, T., (2011) Phys. Rev. B, 83, p. 155417. , 10.1103/PhysRevB.83.155417
Cuansing, E.C., Wang, J.-S., (2010) Phys. Rev. e, 82, p. 021116. , 10.1103/PhysRevE.82.021116
Chen, J., (2000), Ph.D. dissertation, Yale University
Goedecker, S., Teter, M., Hutter, J., (1996) Phys. Rev. B, 54, p. 1703. , 10.1103/PhysRevB.54.1703
Verstraete, M.J., Gonze, X., Phonon band structure and electron-phonon interactions in metallic nanowires (2006) Physical Review B - Condensed Matter and Materials Physics, 74 (15), p. 153408. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevB.74.153408&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevB.74.153408
Persson, B.N.J., Baratoff, A., (1987) Phys. Rev. Lett., 59, p. 339. , 10.1103/PhysRevLett.59.339
Paulsson, M., Frederiksen, T., Brandbyge, M., Modeling inelastic phonon scattering in atomic- and molecular-wire junctions (2005) Physical Review B - Condensed Matter and Materials Physics, 72 (20), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRB:72, DOI 10.1103/PhysRevB.72.201101, 201101
Chen, Y.-C., Zwolak, M., Di Ventra, M., Inelastic effects on the transport properties of alkanethiols (2005) Nano Letters, 5 (4), pp. 621-624. , DOI 10.1021/nl047899t
Jiang, J., Kula, M., Lu, W., Luo, Y., First-principles simulations of inelastic electron tunneling spectroscopy of molecular electronic devices (2005) Nano Letters, 5 (8), pp. 1551-1555. , DOI 10.1021/nl050789h
Nunes, R.W., Vanderbilt, D., (1994) Phys. Rev. Lett., 73, p. 712. , 10.1103/PhysRevLett.73.712
Ness, H., Quantum inelastic electron-vibration scattering in molecular wires: Landauer-like versus Green's function approaches and temperature effects (2006) Journal of Physics Condensed Matter, 18 (27), pp. 6307-6328. , DOI 10.1088/0953-8984/18/27/014, PII S0953898406209330, 014
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.