Abee T. & Wouters J.A., 1999. Microbial stress response in minimal processing. Int. J. Food Microbiol., 50, 65-91.
Ahmad N. & Marth E.H., 1989. Behaviour of Listeria monocytogenes at 7, 13, 21 and 35 degree in tryptose broth acidified with acetic, citric or lactic acid. J. Food Prot., 52, 688-695.
Altena K., Guder A., Cramer C. & Bierbaum G., 2000. Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl. Environ. Microbiol., 66, 2565-2571.
Alves V.F., Martinez R.C.R., Lavrador M.A.S. & De Martinis E.C.P., 2006. Antilisterial activity of lactic acid bacteria inoculated on cooked ham. Meat Sci., 74(4), 623-627.
Ananou S., Maqueda M., Martínez-Bueno M. & Valdivia E., 2007. Biopreservation, an ecological approach to improve the safety and shelf-life of foods. In: Méndez-Vilas A., ed. Communicating current research and educational topics and trends in applied microbiology, Vol. 1, 475-486.
Ananou S. et al., 2009. Evaluation of an enterocin AS-48 enriched bioactive powder obtained by spray drying. Food Microbiol., 27, 58-63.
Audia J.P., Webb C.C. & Foster J.W., 2001. Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. Int. J. Med. Microbiol., 291, 97-106.
Axelsson L. & Holck A., 1995. The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Bacteriol., 177, 2125-2137.
Bauer R. & Dicks L.M.T., 2005. Mode of action of lipid IItargeting lantibiotics. Int. J. Food Microbiol., 101, 201-216.
Benkerroum N. et al., 2005. Lyophilized preparations of bacteriocinogenic Lactobacillus curvatus and Lactococcus lactis subsp. lactis as potential protective adjuncts to control Listeria monocytogenes in dry-fermented sausages. J. Appl. Microbiol., 98, 56-63.
Bhatti M., Veeramachaneni A. & Shelef L.A., 2004. Factors affecting the antilisterial effects of nisin in milk. Int. J. Food Microbiol., 97, 215-219.
Cai Y. et al., 1999. Lactobacillus paralimentarius sp. nov., isolated from sourdough. Int. J. Syst. Bacteriol., 49, 1451-1455.
Chawla S.P. & Chander R., 2004. Microbiological safety of shelf-stable meat products prepared by employing hurdle technology. Food Control, 15, 559-563.
Cotter P.D. & Hill C., 2003. Surviving the acid test: responses of Gram+ bacteria to low pH. Microbiol. Mol. Biol. Rev., 67, 429-453.
Desmazeaud M., 1998. Bactéries lactiques et qualité des fromages. Jouy-en-Josas, France: Laboratoire de Recherches laitières, INRA.
Dhindale A.K., Shete S.M., Singh B. & Sirohi S.K., 2009. Potential of bacteriocin (Nisin) to modify in vitro rumen fermentation as compared with monensin. Indian J. Dairy Sci., 62(3), 187-191.
Diep D.B. & Nes I.F., 2002. Ribosomally synthesized antibacterial peptides in Gram+ bacteria. Curr. Drug Targets, 3, 107-122.
Diep D., Salehian Z., Holo H. & Nes I.F., 2007. Common mechanisms of target cell recognition and immunity for class II bacteriocin. Proc. Natl Acad. Sci., 104, 2384-2389.
Dilworth M.J. & Glenn A.R., 1999. Problems of adverse pH and bacterial strategies to combat it. Novartis Found. Symp., 221, 4-14.
Dortu C. et al., 2008. Anti-listeria activity of bacteriocinproducing Lactobacillus curvatus CWBI-B28 and Lactobacillus sakei CWBI-B1365 on raw beef and poultry meat. Lett. Appl. Microbiol., 47, 581-586.
Drider D. et al., 2006. The continuing story of class IIa bacteriocin. Microbiol. Mol. Biol. Rev., 70(2), 564-582.
Dufour A., Rince A., Uguen P. & Le Pennec J.P., 2000. IS1675, a novel lactococcal insertion element, forms a transposon-like structure including the lacticin 481 lantibiotic operon. J. Bacteriol., 182, 5600-5605.
Eijsink V.G. et al., 2002. Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie van Leeuwenhoek, 81(1-4), 639-654.
Enan G., el-Essawy A.A., Uyttendaele M. & Debevere J., 1996. Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausage: characterization, production and bactericidal action of plantaricin UG1. Int. J. Food Microbiol., 30, 189-215.
Ennahar S., Sashihara T., Sonomoto K. & Ishizaki A., 2000. Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol. Rev., 24, 85-106.
Foegeding P.M., Thomas A.B., Pilkington D.H. & Klaenhammer T.R., 1992. Enhanced control of Listeria monocytogenes by in situ-produced pediocin during dry fermented sausage production. Appl. Environ. Microbiol., 58, 884-890.
Foster J.W., 1999. When protons attack: microbial strategies of acid adaptation. Curr Opin. Microbiol., 2, 170-174.
Foster J.W. & Hall H.K., 1990. Adaptive acidification tolerance response of S. typhimurium. J. Bacteriol., 172, 771-778.
Gallo L.I., Pilosof A.M.R. & Jagus R.J., 2007a. Effective control of Listeria innocua by combination of nisin, pH and low temperature in liquid cheese whey. Food Control, 18, 1086-1092.
Gallo L.I., Pilosof A.M.R. & Jagus R.J., 2007b. Effect of the sequence of nisin and pulsed electric fields treatments and mechanisms involved in the inactivation of Listeria innocua in whey. J. Food Eng., 79, 188-193.
Garneau S., Martin N.I. & Vederas J.C., 2002. Twopeptide bacteriocins produced by lactic acid bacteria. Biochemistry, 84, 577-592.
Garriga M. et al., 2002. Bactericidal synergism through bacteriocins and high pressure in a meat model system during storage. Food Microbiol., 19, 509-518.
Gobbetti M., De Angelis M., Corsetti A. & Di Cagno R., 2005. Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci. Tech., 16, 57-69.
Guinane C.M., Cotter P.D., Hill C. & Ross P., 2005. A review: microbial solutions to microbial problems; lactococcal bacteriocins for the control of undesirable biota of food. J. Appl. Microbiol., 98, 1316-1325.
Hornbæk T., Brocklehurst T.F. & Budde B.B., 2004. The antilisterial effect of Leuconostoc carnosum 4010 and leucocins 4010 in the presence of sodiumchloride and sodium nitrite examined in a structured gelatin system. Int. J. Food Microbiol., 92, 129-140.
Hugenholtz J. & Kleerebezem M., 1999. Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Curr. Opin. Biotechnol., 10(5), 492-497.
Kalchayanand N., Sikes A., Dunne C.P. & Ray B., 1998. Factors influencing death and injury of foodborne pathogens by hydrostatic pressure-pasteurization. Food Microbiol., 15, 207-214.
Keyser J., van der Does C. & Driessen A., 2003. The bacterial translocase: a dynamic protein channel complex. Cell. Mol. Life Sci., 60, 2034-2052.
Klaenhammer T.R., Barrangou R., Logan Buck B. & Azcarate-Peril M.A., 2005. Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol. Rev., 29, 393-409.
Kleerebezem M., 2004. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides, 25, 1405-1414.
Kleerebezem M. & Quadri L.E., 2001. Peptide pheromonedependent regulation of antimicrobial peptide production in Gram+ bacteria: a case of multicellular behavior. Peptides, 22, 1579-1596.
Kouakou P. et al., 2008. Enhancing the antilisterial effect of Lactobacillus curvatus CWBI-B28 in pork meat and cocultures by limiting bacteriocin degradation. Meat Sci., 80, 640-648.
Lavermicocca P., Valerio F. & Visconti A., 2003. Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl. Environ. Microbiol., 69(1), 634-640.
Leistner L., 1978. Hurdle effect and energy saving. In: Downey W.K., ed. Food quality and nutrition. London: Applied Science Publishers, 553-557.
Leistner L., 1995. In: Could G.W., ed. Principles and applications of hurdle technology, new methods of food preservation. London: Blackie Academic & Professional, 1.
Leistner L., 2000. Basic aspects of food preservation by hurdle technology. Inter. J. Food Microbiol., 55, 181-186.
Line J.E. et al., 2008. Isolation and purification of Enterocin E-760 with broad antimicrobial activity against Gram+ and Gram- bacteria. Antimicrob. Agents Chemother., 52(3), 1094-1100.
Long C. & Phillips C.A., 2003. The effect of sodium citrate, sodium lactate and nisin on the survival of Arcobacter butzleri NCTC 12481 on chicken. Food Microbiol., 20, 495-502.
Mainil J., 2005. Génétique et régulation de la virulence bactérienne: vers la version moléculaire des postulats de Koch. Ann. Méd. Vét., 149(C), 24-32.
Maqueda M. et al., 2004. Peptide AS-48: prototype of new class of cyclic bacteriocins. Curr. Protein Pept. Sci., 5(5), 399-416.
Metzner M., Germer J. & Hengge R., 2004a. Multiple stress signal integration in the regulation of the complex sigma S-dependent csiD-ygaF-gabDTP operon in Escherichia coli. Mol. Microbiol., 51, 799-811.
Müller M., Ehrmann M. & Vogel R., 2000. Lactobacillus frumenti sp. nov., a new lactic acid bacterium isolated from rye-bran fermentations with a long fermentation period. Int. J. Syst. Evol. Microbiol., 50, 2127-2133.
Muñoz A. et al., 2007. Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: bactericidal synergism with heat. Int. Dairy J., 17, 760-769.
Oheix N., 2003. Caractérisation moléculaire des bactéries lactiques des levains de panification. Mémoire d'ingénieur: École Nationale d'Ingénieurs des Techniques des Industries Agricoles et Alimentaires (ENITIAA), Nantes (France).
Oppegard C. et al., 2007. The two-peptide class II bacteriocins: structure, production and mode of action. J. Mol. Microbiol. Biotechnol., 13(4), 210-219.
Papamanoli E., Kotzekidou P., Tzanetakis N. & Litopoulou-Tzanetaki E., 2002. Characterization of micrococcaceae isolated from dry fermented sausage. Food Microbiol., 19, 441-449.
Patton G.C. & Van Der Donk W.A., 2005. New developments in lantibiotic biosynthesis and mode of action. Curr. Opin. Microbiol., 8, 543-551.
Privat et al., 2010. Plasmid-associated bacteriocin production by Lactobacillus LMG21688 suppresses Listeria monocytogenes growth rebound in a food system. FEMS Microbiol. Lett., 306(1), 37-44.
Rauch P.J.G. & de Vos W.M., 1992. Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J. Bacteriol., 174, 1280-1287.
Rauch P.J.G., Beerthuyzen M.M. & De Vos W.M., 1994. Distribution and evolution of nisinsucrose elements in Lactococcus lactis. Appl. Environ. Microbiol., 60, 1798-1804.
Rodgers S., 2001. Preserving non-fermented refrigerated foods with microbial cultures: a review. Trends Food Sci. Technol., 12, 276-284.
Rusch S. & Kendall D., 2007. Interactions that drive secdependent bacterial protein transport. Biochemistry, 46, 9665-9673.
Sanchez J. et al., 2007. Amino acid and nucleotide sequence, adjacent genes and heterologous expression of hiracin JM79, a sec-dependent bacteriocin produced by Enterococcus hirae DCH5, isolated from Mallard ducks (Anas platyrhynchos). FEMS Microbiol. Lett., 270, 227-236.
Schillinger U., Kaya M. & Lücke F.K., 1991. Behavior of Listeria monocytogenes in meat and its control by a bacteriocin-producing strain of Lactobacillus sake. J. Appl. Bacteriol., 70, 473-478.
Schlyter J.H. et al., 1993. The effects of diacetate with nitrite, lactate, or pediocin on the viability of Listeria monocytogenes in turkey slurries. Int. J. Food Microbiol., 19, 271-281.
Schöbitz R., Suazo V., Costa M. & Ciampi L., 2003. Effects of a bacteriocin-like inhibitory substance from Carnobacterium piscicola against human and salmon isolates of L. monocytogenes. Int. J. Food Microbiol., 84, 237-244.
Stiles M.E. & Holzapfel W., 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol., 36(1), 1-29.
Straume D., Kjos M., Nes I.F. & Diep D.B., 2007. Quorumsensing based bacteriocin production is down-regulated by N-terminally truncated species of gene activators. Mol. Genet. Genomics, 278(3), 283-293.
Tantillo M.G., Di P.A. & Novello L., 2002. Bacteriocinproducing Lactobacillus sake as starter culture in dry sausages. New Microbiol., 25, 45-49.
Thomas L., Maillard J.-Y., Lambert R.J.W. & Russell A.D., 2000. Development of resistance to chlorhexidine acetate in Pseudomonas aeruginosa and the effect of residual concentration. J. Hosp. Infect., 46, 297-303.
Torriani S., Zapparoli G. & Dellaglio F., 1999. Use of PCRbased methods for rapid differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. Appl. Environ. Microbiol., 65(10), 4351-4356.
Valcheva R. et al., 2005. Lactobacillus hammesii sp. nov., isolated from french sourdough. Int. J. Syst. Evol. Microbiol, 55, 763-767.
Valcheva R. et al., 2006. Lactobacillus nantensis sp. nov. isolated from French wheat sourdough. Int. J. Syst. Evol. Microbiol., 56, 587-591.
Vermeiren L., Devlieghere F. & Debevere J., 2004. Evaluation of meat born lactic acid bacteria as protective cultures for the biopreservation of cooked meat products. Int. J. Food Microbiol., 96(2), 149-164.
Vignolo G.M., Suriani F., Pesce de Ruiz Holgado A. & Olivier G., 1993. Antibacterial activity of lactobacterial strains isolated from dry fermented sausages. J. Appl. Microbiol., 75, 344-349.
Wemekamp-Kamphuis H.H. et al., 2004. Identification of sigma factor sigma B-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl. Environ. Microbiol., 70, 3457-3466.
Wiese B., Strohmar W., Rainey F. & Diekmann H., 1996. Lactobacillus panis sp. nov., from sourdough with a long fermentation period. Int. J. Syst. Bacteriol., 46(2), 449-453.