[en] Direct methanol fuel cells (DMFCs) using a proton exchange membrane as electrolyte is an attractive option for electricity generation. The most widely used membrane in the DMFC system is based on a perfluorinated polymer bearing sulfonic acid functions like Nafion®. The latter combines chemical, mechanical and thermal stability and high protonic conductivity but shows elevated methanol permeability. We propose the preparation of a novel type of hybrid membranes to tentatively solve this problem. This innovative material results from the homogeneous dispersion of a nano-scaled inorganic filler within Nafion. The filler consists of stacks of negatively charged alumino-silicate layers (Cloisite), with a positive counter-ion in the interlamellar space. The purpose of the addition of this filler is to decrease methanol diffusion through the polymer membrane without decreasing too much the ionic conductivity.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Thomassin, Jean-Michel ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Pagnoulle, Christophe; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Bizzari, Didier; University of Liège (Ug) > Department of Applied Chemistry > Laboratory of Industrial Chemistry
Caldarella, Giuseppe ; Université de Liège - ULiège > Department of Applied Chemistry > Laboratory of Industrial Chemistry
Germain, Albert ; Université de Liège - ULiège > Department of Applied Chemistry > Laboratory of Industrial Chemistry
Jérôme, Robert ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Language :
English
Title :
Nafion-layered silicate nanocomposite membrane for fuel cell application
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Jannasch, P.; Current Opinion in Colloid Interface Science 2003, 8, 96.
Kreuer, K. D.; J. Membr. Sci. 2001, 185, 29.
Wang, F.; Hickner, M.; Kim, Y. S.; Zawodzinski, T. A.; McGrath, J. E.; J. Membr. Sci. 2002, 197, 231.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.