[en] A marker-assisted selection program (MAS) has been implemented in dairy cattle in France. The efficiency of such a selection program depends on the use of correct genetic parameters for the marked quantitative trait loci (QTL). Therefore, the objective of this study was to estimate the proportion of genetic variance explained by 4 QTL described in previous studies (these QTL are segregating on chromosomes 6, 14, 20, and 26). Genotypes for 11 markers were available for 3,974 bulls grouped within 54 sire families of the French Holstein population undergoing MAS. The parameters were estimated for 4 QTL and 5 dairy traits: milk, fat and protein yields, and fat and protein percentages. The proportion of genetic variance explained by the QTL ranged from as low as 0.03 to 0.36%. Both lack of marker informativity and poor monitoring of QTL transmission might limit the accuracy of estimation. The QTL explained a larger proportion of genetic variance for milk composition traits. The QTL on chromosome 14 and chromosomes 6 and 20 have their largest influence on fat and protein percentages, respectively. The overall proportions of genetic variance explained by the QTL were 27.0, 30.7, 24.1, 48.2, and 33.6% for milk, fat and protein yields, and fat and protein percentages, respectively. These results clearly indicated that a large part of the genetic variance is explained by a small number of QTL and that their use in MAS might be beneficial for dairy cattle breeding programs.
Disciplines :
Genetics & genetic processes Animal production & animal husbandry
Author, co-author :
Druet, Tom ; Institut Scientifique de Recherche Agronomique - INRA > Département de Génétique Animale > Station de Génétique Quantitative et Appliquée
Fritz, S.
Boichard, D.
Colleau, J. J.
Language :
English
Title :
Estimation of genetic parameters for quantitative trait loci for dairy traits in the French Holstein population.
Publication date :
2006
Journal title :
Journal of Dairy Science
ISSN :
0022-0302
eISSN :
1525-3198
Publisher :
American Dairy Science Association, Champaign, United States - Illinois
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Blott, S., J. J. Kim, S. Moisio, A. Schmidt-Küntzel, A. Cornet, P. Berzi, N. Cambiaso, C. Ford, B. Grisart, D. Johnson, L. Karim, P. Simon, R. Snell, R. Spelman, J. Wong, J. Vilkki, M. Georges, F. Farnir, and W. Coppieters. 2003. Molecular dissection of a quantitative trait locus: A phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 163:253-266.
Boichard, D., S. Fritz, M. N. Rossignol, M. Y. Bescher, A. Malafosse, and J. J. Colleau. 2002. Implementation of marker-assisted selection in French dairy cattle. Communication no. 22-03 in Proc. 7th World Congr. Genet. Appl. Livest. Prod., Montpellier, France.
Boichard, D., C. Grohs, F. Bourgeois, F. Cerqueira, R. Faugeras, A. Neau, R. Rupp, Y. Amigues, M. Y. Boscher, and H. Levéziel. 2003. Detection of genes influencing economic traits in three French dairy cattle breeds. Genet. Sel. Evol. 35:77-101.
Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.
Churchill, G. A., and R. W. Doerge. 1996. Empirical threshold values for quantitative trait mapping. Genetics 138:963-971.
Cohen-Zinder, M., E. Seroussi, D. M. Larkin, J. J. Loor, A. Evertsvan der Wind, J. H. Lee, J. K. Drackley, M. R. Band, A. G. Hernandez, M. Shani, H. A. Lewin, J. I. Weller, and M. Ron. 2005. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res. 15:936-944.
Fernando, R. L., and M. Grossman. 1989. Marker-assisted selection using best linear unbiased prediction. Genet. Sel. Evol. 21:467-477.
Freyer, G., C. Kühn, R. Weikard, Q. Zhang, M. Mayer, and I. Hoeschele. 2002. Multiple QTL on chromosome six in dairy cattle affecting yield and content traits. J. Anim. Breed. Genet. 119:69-82.
Freyer, G., P. Sorensen, C. Kühn, R. Weikard, and I. Hoeschele. 2003. Search for pleiotropic QTL on chromosome BTA6 affecting yield traits of milk production. J. Dairy Sci. 86:999-1008.
Gautier, M., R. R. Barcelona, S. Fritz, T. Druet, D. Boichard, A. Eggen, and T. H. E. Meuwissen. 2005. Fine mapping and physical characterization of two linked quantitative trait loci affecting milk fat yield in dairy cattle on BTA26. Genetics 172:425-436
George, A. W., P. M. Visscher, and C. S. Haley. 2000. Mapping quantitative trait loci in complex pedigrees: A two-step variance component approach. Genetics 156:2081-2092.
Georges, M., D. Nielsen, M. Mackinnon, A. Mishra, R. Okimoto, A. T. Pasquino, S. Sargeant, A. Sorensen, M. R. Steele, X. Zhao, J. E. Womack, and I. Hoeschele. 1995. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 139:907-920.
Goddard, M. E. 1992. A mixed model for analyses of data on multiple genetic markers. Theor. Appl. Genet. 83:878-886.
Grignola, F. E., I. Hoeschele, and B. Tier. 1996. Mapping quantitative trait loci in outcross populations via residual maximum likelihood. I. Methodology. Genet. Sel. Evol. 28:479-490.
Grisart, B., W. Coppieters, F. Farnir, L. Karim, C. Ford, P. Berzi, N. Cambisano, M. Mni, S. Reid, P. Simon, R. Spelman, M. Georges, and R. Snell. 2002. Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 12:222-231.
Ihara, N., A. Takasuga, K. Mizoshita, H. Takeda, M. Sugimoto, Y. Mizoguchi, T. Hirano, T. Itoh, T. Watanabe, K. M. Reed, W. M. Snelling, S. M. Kappes, C. W. Beattie, G. L. Bennett, and Y. Sugimoto. 2004. A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Res. 14:1987-1998.
Jensen, J., E. A. Mantysaari, P. Madsen, and R. Thompson. 1996. Residual maximum likelihood estimation of (co)variance components in multivariate mixed linear models using average information. J. Ind. Soc. Agric. Statistics 49:215-236.
Kashi, Y., E. Hallerman, and M. Soller. 1990. Marker-assisted selection of candidate bulls for progeny testing programmes. Anim. Prod. 51:63-74.
Looft, C., N. Reisnch, C. Karall-Albrecht, S. Paul, M. Brink, H. Thornsen, G. Brockmann, C. Kühn, M. Schwerin, and E. Kalm. 2001. A mammary gland EST showing linkage disequilibrium to a milk production QTL on bovine chromosome 14. Mamm. Genome 12:646-650.
Misztal, I., T. Tsuruta, T. Strabel, B. Auvray, T. Druet, and D. H. Lee. 2002. BLUPF90 and related programs (BGF90). Communication No. 28-07 in Proc. 7th World Congr. Genet. Appl. Livest. Prod., Montpellier, France.
Olsen, H. G., L. Gomez-Raya, D. I. Våge, I. Olsaker, H. Klungland, M. Svendsen, T. Ådnøy, A. Sabry, G. Klemetsdal, N. Schulman, W. Krämer, G. Thaller, K. Ronningen, and S. Lien. 2002. A genome scan for quantitative trait loci affecting milk production in Norwegian dairy cattle. J. Dairy Sci. 85:3124-3130.
Olsen, H. G., S. Lien, M. Gautier, H. Nilsen, A. Roseth, P. R. Berg, K. K. Sundsaasen, M. Svendsen, and T. H. E. Meuwissen. 2005. Mapping of a milk production trait locus to a 420-kb region on bovine chromosome 6. Genetics 169:275-283.
Pong-Wong, R., A. W. George, J. A. Woolliams, and C. S. Haley. 2001. A simple and rapid method for calculating identity-by-descent matrices using multiple markers. Genet. Sel. Evol. 33:453-471.
Robert-Granié, C., B. Bonaïti, D. Boichard, and A. Barbat. 1999. Accounting for variance heterogeneity in French dairy cattle genetic evaluation. Livest. Prod. Sci. 62:343-357.
Ron, M., D. Kliger, E. Feldmesser, E. Seroussi, E. Ezra, and J. I. Weller. 2001. Multiple quantitative trait locus analysis of bovine chromosome 6 in the Israeli holstein population by a daughter design. Genetics 159:727-735.
Schnabel, R. D., J. J. Kim, M. S. Ashwell, T. S. Sonstergard, C. P. Van Tassell, E. E. Connor, and J. F. Taylor. 2005. Fine-mapping milk production quantitative trait loci on BTA6: Analysis of the bovine osteopontin gene. Proc. Natl. Acad. Sci. USA 102:6896-6901.
Spelman, R. J., W. Coppieters, L. Karim, J. A. M. van Arendonk, and H. Bovenhuis. 1996. Quantitative trait loci analysis for five milk production traits on chromosome six in the Dutch Holstein-Friesian population. Genetics 144:1799-1808.
Szyda, J., Z. Liu, F. Reinhardt, and R. Reents. 2005. Estimation of quantitative trait loci parameters for milk production traits in German Holstein dairy cattle population. J. Dairy Sci. 88:356-367.
VanRaden, P. M., and G. R. Wiggans. 1991. Derivation, calculation and use of national animal model information. J. Dairy Sci. 74:2737-2746.
Wang, T., R. L. Fernando, S. van der Beek, M. Grossman, and J. A. M. van Arendonk. 1995. Covariance between relatives for a marked quantitative trait locus. Genet. Sel. Evol. 27:251-274.
Zhang, Q., D. Boichard, I. Hoeschele, C. Ernst, A. Eggen, B. Murkve, M. Pfister-Genskow, L. A. Witte, F. E. Grignola, P. Uimari, G. Thaller, and M. D. Bishop. 1998. Mapping quantitative trait loci for milk production and health of dairy cattle in a large outbred pedigree. Genetics 149:1959-1973.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.