Experimental/ ab initio calculations; binding energy; density functional theory; effective mass; elemental semiconductors; germanium; Ge-Si alloys; nanowires; passivation; semiconductor heterojunctions; semiconductor quantum wires; silicon/ core-shell nanowires; electronic devices; first-principles plane wave calculations; generalized gradient approximation; structural properties; electronic properties; H-passivated nanowires; surface passivation; substitutional effects; band structure; quantum confinement; surface effects; relative contribution; size 0.6 nm to 2.9 nm; Ge-GeSi; Ge-Si/ A6146 Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials A7115A Ab initio calculations (condensed matter electronic structure) A7115M Density functional theory, local density approximation (condensed matter electronic structure) A8160C Surface treatment and degradation in semiconductor technology A6150L Crystal binding A7125J Effective mass and g-factors (condensed matter electronic structure) A7125R Electronic structure of crystalline elemental semiconductors A7125T Electronic structure of crystalline semiconductor compounds and insulators B2550E Surface treatment (semiconductor technology) B2520C Elemental semiconductors B2520M Other semiconductor materials/ size 6.0E-10 to 2.9E-09 m/ Ge-GeSi/int GeSi/int Ge/int Si/int GeSi/bin Ge/bin Si/bin Ge/el; Ge-Si/int Ge/int Si/int Ge/el Si/el
Abstract :
[en] Germanium/Germanium-Silicon core/shell nanowires are expected to play an important role in future electronic devices. We use first-principles plane-wave calculations within density-functional theory in the generalized gradient approximation to investigate the structural and electronic properties of bare and H-passivated Ge nanowires and core/shell Ge/Ge-Si, Ge/Si, and Si/Ge nanowires. The diameters of the nanowires considered are in the range of 0.6-2.9 nm and oriented along [110] and [111] directions. The diameter, the surface passivation, and the substitutional effects on the binding energy, band structure, and effective mass are extensively investigated considering the relative contribution of quantum confinement and surface effects.
Disciplines :
Physics
Author, co-author :
Pekoz, R.
Raty, Jean-Yves ; Université de Liège - ULiège > Département de physique > Physique de la matière condensée
Language :
English
Title :
From bare Ge nanowire to Ge/Si core/shell nanowires: a first-principles study
Publication date :
2009
Journal title :
Physical Review. B, Condensed Matter and Materials Physics
ISSN :
1098-0121
eISSN :
1550-235X
Publisher :
American Physical Society, Woodbury, United States - New York
Duan, X., Huang, Y., Cui, Y., Wang, J., Lieber, C.M., Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices (2001) Nature, 409 (6816), pp. 66-69. , DOI 10.1038/35051047
Someya, T., Werner, R., Forchel, A., Catalano, M., Cingolani, R., Arakawa, Y., Room temperature lasing at blue wavelengths in gallium nitride microcavities (1999) Science, 285 (5435), pp. 1905-1906. , DOI 10.1126/science.285.5435.1905
Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.-H., Lieber, C.M., Logic gates and computation from assembled nanowire building blocks (2001) Science, 294 (5545), pp. 1313-1317. , DOI 10.1126/science.1066192
Cui, Y., Zhong, Z., Wang, D., Wang, W.U., Lieber, C.M., High performance silicon nanowire field effect transistors (2003) Nano Letters, 3 (2), pp. 149-152. , DOI 10.1021/nl025875l
Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H., Lieber, C.M., Ge/Si nanowire heterostructures as high-performance field-effect transistors (2006) Nature, 441 (7092), pp. 489-493. , DOI 10.1038/nature04796, PII NATURE04796
Hagfeldt, A., Grätzel, M., (1995) Chem. Rev. (Washington, D.C.), 95, p. 49. , 10.1021/cr00033a003
Tian, B., Zheng, X., Kempa, T.J., Fang, Y., Yu, N., Yu, G., Huang, J., Lieber, C.M., Coaxial silicon nanowires as solar cells and nanoelectronic power sources (2007) Nature, 449 (7164), pp. 885-889. , DOI 10.1038/nature06181, PII NATURE06181
Lee, M.R., Eckert, R.D., Forberich, K., Dennler, G., Brabec, C.J., Gaudiana, R.A., (2009) Science, 324, p. 232. , 10.1126/science.1168539
Hiruma, K., Yazawa, M., Katsuyama, T., Ogawa, K., Haraguchi, K., Koguchi, M., Kakibayashi, H., (1995) J. Appl. Phys., 77, p. 447. , 10.1063/1.359026
Han, W., Fan, S., Li, Q., Hu, Y., Synthesis of gallium nitride nanorods through a carbon nanotube- confined reaction (1997) Science, 277 (5330), pp. 1287-1289. , DOI 10.1126/science.277.5330.1287
Adhikari, H., Marshall, A.F., Chidsey, C.E.D., McIntyre, P.C., Germanium nanowire epitaxy: Shape and orientation control (2006) Nano Letters, 6 (2), pp. 318-323. , DOI 10.1021/nl052231f
Medaboina, D., Gade, V., Patil, S.K.R., Khare, S.V., (2007) Phys. Rev. B, 76, p. 205327. , 10.1103/PhysRevB.76.205327
Arantes, J.T., Fazzio, A., Theoretical investigations of Ge nanowires grown along the [110] and [111] directions (2007) Nanotechnology, 18 (29), p. 295706. , DOI 10.1088/0957-4484/18/29/295706, PII S0957448407385498
Harris, C., O'Reilly, E.P., Nature of the band gap of silicon and germanium nanowires (2006) Physica E: Low-Dimensional Systems and Nanostructures, 32, pp. 341-345. , DOI 10.1016/j.physe.2005.12.094, PII S1386947705005345
Holmes, J.D., Johnston, K.P., Doty, R.C., Korgel, B.A., Control of thickness and orientation of solution-grown silicon nanowires (2000) Science, 287 (5457), pp. 1471-1473. , DOI 10.1126/science.287.5457.1471
Noborisaka, J., Motohisa, J., Hara, S., Fukui, T., Fabrication and characterization of freestanding GaAs/AlGaAs core-shell nanowires and AlGaAs nanotubes by using selective-area metalorganic vapor phase epitaxy (2005) Applied Physics Letters, 87 (9), pp. 1-3. , DOI 10.1063/1.2035332, 093109
Titova, L.V., Hoang, T.B., Jackson, H.E., Smith, L.M., Yarrison-Rice, J.M., Kim, Y., Joyce, H.J., Jagadish, C., Temperature dependence of photoluminescence from single core-shell GaAs-AlGaAs nanowires (2006) Applied Physics Letters, 89 (17), p. 173126. , DOI 10.1063/1.2364885
Law, M., Greene, L.E., Radenovic, A., Kuykendall, T., Liphardt, J., Yang, P., ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells (2006) Journal of Physical Chemistry B, 110 (45), pp. 22652-22663. , DOI 10.1021/jp0648644
Li, J., Zhao, D., Meng, X., Zhang, Z., Zhang, J., Shen, D., Lu, Y., Fan, X., Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method (2006) Journal of Physical Chemistry B, 110 (30), pp. 14685-14687. , DOI 10.1021/jp061563l
Radmilovic, V., Law, M., Yang, P., Radenovic, A., Nelson, C.E., EFTEM imaging of ZnO-TiO2 core-shell nanowires and TiO 2 nanotubes (2006) Microscopy and Microanalysis, 12 (SUPPL. 2), pp. 474-475. , DOI 10.1017/S1431927606069261, PII S1431927606069261
Lin, H.-M., Chen, Y.-L., Yang, J., Liu, Y.-C., Yin, K.-M., Kai, J.-J., Chen, F.-R., Chen, C.-C., Synthesis and characterization of core-shell GaP@GaN and GaN@GaP nanowires (2003) Nano Letters, 3 (4), pp. 537-541. , DOI 10.1021/nl0340125
Zhang, Y., Wang, L.-W., Mascarenhas, A., Quantum coaxial cables for solar energy harvesting (2007) Nano Letters, 7 (5), pp. 1264-1269. , DOI 10.1021/nl070174f
Lauhon, L.J., Gudlksen, M.S., Wang, D., Lieber, C.M., Epitaxial core-shell and core-multishell nanowire heterostructures (2002) Nature, 420 (6911), pp. 57-61. , DOI 10.1038/nature01141
Musin, R.N., Wang, X.-Q., Quantum size effect in core-shell structured silicon-germanium nanowires (2006) Physical Review B - Condensed Matter and Materials Physics, 74 (16), p. 165308. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevB.74.165308&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevB.74.165308
Different orientations in NWs are extensively studied and for both Si and Ge wires aligned in the [110] direction are found to have the smallest band gap and [100] have the largest (Ref.)
In the literature there are many definitions for defining the diameter of NWs. In this study, the diameters are given in terms of the largest distance between two hydrogen atoms
Kohn, W., Sham, L.J., (1965) Phys. Rev., 140, p. 1133. , 10.1103/PhysRev.140.A1133
Kresse, G., Hafner, J., (1993) Phys. Rev. B, 47, p. 558. , Numerical computations have been carried out by using VASP software: 10.1103/PhysRevB.47.558
Wang, S.Q., Ye, H.Q., (2003) J. Phys.: Condens. Matter, 15, p. 197. , 10.1088/0953-8984/15/12/102
Batista, E.R., Heyd, J., Hennig, R.G., Uberuaga, B.P., Martin, R.L., Scuseria, G.E., Umrigar, C.J., Wilkins, J.W., Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of silicon phases and defects (2006) Physical Review B - Condensed Matter and Materials Physics, 74 (12), p. 121102. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevB.74.121102&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevB.74.121102
Durgun, E., Akman, N., Ciraci, S., (2008) Phys. Rev. B, 78, p. 195116. , 10.1103/PhysRevB.78.195116
In the literature these types of geometries are studied for Ge, Si, and Ge/Si NWs (Refs.). In the present calculations the effect of unit cell is also studied for 3×3 Ge60 NW grown in the [110] direction. In the double cell calculations, after the optimization, the same atomic configuration and a very slight change in the cohesive energy per Ge atom (0.004 eV) was found. Therefore, all other calculations were performed with single unit cells
Kittel, C., (1996) Introduction to Solid State Physics, , 7th ed. (John Wiley & Sons, Singapore
Cohen, M.L., Chelikowsky, J.R., (1988) Electronic Structure and Optical Properties of Semiconductors, , Springer, Berlin
Hill, N.A., Pokrant, S., Hill, A.J., (1999) J. Phys. Chem. B, 103, p. 3156. , 10.1021/jp990188c
Bruno, M., Palummo, M., Marini, A., Del Sole, R., Olevano, V., Kholod, A.N., Ossicini, S., Excitons in germanium nanowires: Quantum confinement, orientation, and anisotropy effects within a first-principles approach (2005) Physical Review B - Condensed Matter and Materials Physics, 72 (15), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRB:72, DOI 10.1103/PhysRevB.72.153310, 153310
Fernandez-Serra, M.-V., Adessi, Ch., Blase, X., Conductance, surface traps, and passivation in doped silicon nanowires (2006) Nano Letters, 6 (12), pp. 2674-2678. , DOI 10.1021/nl0614258
Iori, F., Ossicini, S., (2009) Physica e (Amsterdam), 41, p. 939. , 10.1016/j.physe.2008.08.010
Singh, A.K., Kumar, V., Note, R., Kawazoe, Y., Effects of morphology and doping on the electronic and structural properties of hydrogenated silicon nanowires (2006) Nano Letters, 6 (5), pp. 920-925. , DOI 10.1021/nl052505z
Sellier, H., Lansbergen, G.P., Caro, J., Rogge, S., Collaert, N., Ferain, I., Jurczak, M., Biesemans, S., Transport spectroscopy of a single dopant in a gated silicon nanowire (2006) Physical Review Letters, 97 (20), p. 206805. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.97.206805&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.97.206805
Wang, D., Chang, Y.-L., Wang, Q., Cao, J., Farmer, D.B., Gordon, R.G., Dai, H., Surface chemistry and electrical properties of germanium nanowires (2004) Journal of the American Chemical Society, 126 (37), pp. 11602-11611. , DOI 10.1021/ja047435x
Amato, M., Palummo, M., Ossicini, S., (2009) Phys. Rev. B, 79, p. 201302. , 10.1103/PhysRevB.79.201302
Bescond, M., Cavassilas, N., Nehari, K., Lannoo, M., Tight-binding calculations of Ge-nanowire bandstructures (2007) Journal of Computational Electronics, 6 (1-3), pp. 341-344. , DOI 10.1007/s10825-006-0137-z, Special Issue on the Proceedings of the International Workshop on Computational Electronics (IWCE-11) Part II