[en] In injection moulding processes such as Resin Transfer Moulding (RTM) for example, numerical simulations are usually performed with a fixed mesh, on which the displacement of the flow front is predicted by the numerical algorithm. During the injection, special physical phenomena occur on the front, such as capillary effects inside the fibre tows or heat transfer when the fluid is injected at a different temperature than the mould. In order to approximate these phenomena accurately, it is always better to adapt the mesh to the shape of the flow front. This can be achieved by implementing re-meshing algorithms, which will provide not only more accurate solutions, but also faster calculations. In order to represent precisely the shape of the saturated domain in the cavity, the mesh needs to be non-isotropic in the vicinity of the flow front. The size of the elements along the front is connected to the overall accuracy needed for the simulation; the size in the perpendicular direction governs the accuracy on the position of the moving boundary in time. Since these two constraints on element size are not related, the need for non-isotropic mesh refinement is crucial. In the approach proposed here, the mesh is changed at each time step from a background isotropic mesh used as starting point in the refinement algorithm. The solution needs to be projected on the new mesh after each re-meshing. This amounts to adopting a new filling algorithm, which will be validated by comparison to a standard simulation (without re-meshing) and with experimental data.
Disciplines :
Materials science & engineering
Author, co-author :
Béchet, Eric ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Conception géométrique assistée par ordinateur
Ruiz, E.; Centre de Recherches Appliquées Sur les Polymères (CRASP) Département de Ge´nie Mécanique Ecole Polytechnique de Montréal H3C 3A7 Canada
Trochu, F.; Centre de Recherches Appliquées Sur les Polymères (CRASP) Département de Ge´nie Mécanique Ecole Polytechnique de Montréal H3C 3A7 Canada
Cuilliere, J. C.; Laboratoire de productique Département de Génie Mécanique Université du Québec à Trois-Rivières G9A 5H7, Cana
Language :
English
Title :
Re-meshing algorithms applied to mould filling Simulations in resin transfer moulding
Adalsteinsson, D. and Sethian. J.A. (1999). The Fast Construction of Extension Velocities in Level Set Methods, J. Computational Physics, 148: 2-22.
Béchet. E., Cuillière, J.C. and Trochu. F. (2002). Generation of a Finite Element Mesh from Stereolithography (STL) Files, Computer Aided Design, 34: 1-17.
Chang, W. and Kikuchi, N. (1994). An Adaptive Remeshing Method in Simulation of Resin Transfer Molding (RTM) Process, Computer Methods in Applied Mechanics and Engineering, 112: 41-68.
Cherfils, C. and Hermeline, F. (1990). Diagonal Swap Procedures and Characterizations of 2D-Delaunay Triangulations, Math. Mod. and Num. Anal., 24(5): 613-626.
Delaunay, B. (1934). Sur la sphère vide. But. Acad. Sci. URSS, Class. Sci. Nat., 793-800.
Dirichlet, G.L. (1850). Über die Reduktion der positiven quadratischen formen mit drei unterstimmten ganzen zahlen, Z. Angew. Math. Mech. 40(3): 209-227.
George. P.L. and Borouchaki, H. (1997). Triangulation de Delaunay et Maillages: application aux éléments finis. Paris, Hermès. ISBN 2-86601-625-4.
Kimmel, R. and Sethian, J.A. (1998). Fast Marching Methods on Triangulated Domains, Proc. Nat. Acad. Sci., 95: 8341-8435.
Pébay, P.P. and Frey. P.J. (1998). A priori Delaunay-conformity. In: Proceedings of the 7th International Meshing Roundtable. pp. 321-333. Dearborn(MI).
Ruppert. J. (1994). A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation, Journal of Algorithms, 18: 548-585.
Sethian, J.A. (1996). Fast Marching Level Set Method for Monotonically Advancing Fronts, Proc. Nat. Acad. Sci., 93(4): 1591-1595.
Sethian, J.A. (1999). Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry. Fluid Mechanics, Computer Vision and Materials Science, Cambridge University Press.
Trochu, F., Ferland, P. and Gauvin, R. (1997). Functional Requirements of a Simulation Software for Liquid Molding Processes, Science and Engineering of Composite Materials, 6(4): 209-218.
Trochu, F., Gauvin, R. and Gao, D.M. (1993). Numerical Analysis of the Resin Transfer Molding Process by the Finite Element Method, Advances in Polymer Technology, 12(4): 329-342.
Voronoï. G. (1908). Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Recherches sur les paralléloèdres primitifs. Journal Reine Angew. Math., 134.
Watson, D.F. (1981). Computing the n-dimensional Delaunay Tesselation with Application to Voronoï Polytopes, Computer Journal, 24(2): 167-172.