Modelled glacial and non-glacial HCO3-, Si and Ge fluxes since the LGM: little potential for impact on atmospheric CO2 concentrations and a potential proxy of continental chemical erosion, the marine Ge/Si ratio
Jones, Ian W; Munhoven, Guy; Tranter, Martynet al.
2002 • In Global and Planetary Change, 33 (1-2), p. 139-153
River geochemistry; Last Glacial Maximum; Marine Ge/Si ratio; Glacial weathering
Abstract :
[en] The runoff and riverine fluxes of HCO3-, Si and Ge that arise from chemical erosion in non-glaciated terrain, are modelled at six time steps from the Last Glacial Maximum (LGM) to the present day. The fluxes that arise from the Great Ice Sheets are also modelled. Terrestrial HCO3- fluxes decrease during deglaciation, largely because of the reduction in the area of the continental shelves as sea level rises. The HCO3- fluxes. and the inferred consumption of atmospheric CO2 are used as inputs to a carbon cycle model that estimates their impact on atmospheric CO2 concentrations ((CO2)-C-atms). A maximum perturbation of (CO2)-C-atms by similar to 5.5 ppm is calculated, The impact of solutes from glaciated terrain is small in comparison to those from non-glaciated terrain. Little variation in terrestrial Si and Ge fluxes is calculated (< 10%). However, the global average riverine Ge/Si ratio may be significantly perturbed if the glacial Ge/Si ratio is high. At present. variations in terrestrial chemical erosion appear to have only a reduced impact on (CO2)-C-atms and only little influence on the global Si and Ge cycle and marine Ge/Si ratios during deglaciation. (C) 2002 Elsevier Science B.V. All rights reserved.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Jones, Ian W; University of Bristol > School of Geographical Sciences > Bristol Glaciology Centre
Munhoven, Guy ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) - Pétrologie et géochimie endogènes
Tranter, Martyn; University of Bristol > School of Geographical Sciences > Bristol Glaciology Centre
Huybrechts, Philippe; Vrije Universiteit Brussel > Departement Geografie
Sharp, Martin J; University of Alberta > Department of Earth and Atmospheric Sciences
Language :
English
Title :
Modelled glacial and non-glacial HCO3-, Si and Ge fluxes since the LGM: little potential for impact on atmospheric CO2 concentrations and a potential proxy of continental chemical erosion, the marine Ge/Si ratio
Amiotte Suchet P. (1995) Cycle du carbone, ésion chimique des continents et transferts vers les océans. Sci. Geol., Mem. , 156 pp. (in French); 97.
Bareille G., Labracherie M., Mortlock R.A., Maier-Reimer E., Froelich P.N. (1998) A test of (Ge/Si)opal as a paleorecorder of (Ge/Si)seawater. Geology 26(2):179-182.
Barnola J.-M., Raynaud D., Korotkevich Y.S., Lorius C. (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329:408-414.
Berger W.H. (1982) Increase of carbon dioxide in the atmosphere during deglaciation: The coral reef hypothesis. Naturwissenschaften 69:87-88.
Bird M.I., Lloyd J., Farquhar G.D. (1994) Terrestrial carbon storage at the LGM. Nature 371:566.
Bluth G.J.S., Kump L.R. (1994) Lithologic and climatologic controls of river chemistry. Geochim. Cosmochim. Acta 58(10):2341-2359.
Broecker W.S. The Glacial World According to Wally, 2nd ed., Eldigio Press, Palisades, NY; 1995.
Broecker W.S., Peng T.-H. Tracers in the Sea Lamont-Doherty Geological Observatory of Columbia University, Palisades, NY; 1982.
Chillrud S.N., Pedrozo F.L., Temporetti P.F., Planas H.F., Froelich P.N. (1994) Chemical weathering of phosphate and germanium in glacial meltwater streams: Effects of subglacial pyrite oxidation. Limnol. Oceanogr. 39(5):1130-1140.
Dansgaard W., Johnsen S.J., Clausen H.B., DahlJensen D., Gundestrup N.S., Hammer C.U., Hvidberg C.S., Steffensen J.P., Sveinbjörnsdottir A.E., Jouzel J., Bond G. (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218-220.
Dokken T.M., Jansen E. (1999) Rapid changes in the mechanism of ocean convection during the last glacial period. Nature 401:458-461.
Filippelli G.M., Carnahan J.W., Derry L.A., Kurtz A. (2000) Terrestrial paleorecords of Ge/Si cycling derived from lake diatoms. Chem. Geol. 168:9-26.
Froelich P.N., Blanc V., Mortlock R.A., Chillrud S.N., Dunstan W., Udomkit A., Peng T.-H. (1992) River fluxes of dissolved silica to the ocean were higher during glacials: Ge/Si in diatoms, rivers, and oceans. Paleoceanography 7(6):739-767.
Gaillardet J., Dupré B., Louvat P., Allègre C.J. (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159:3-30.
Gibbs M.T., Kump L.R. (1994) Global chemical erosion during the last glacial maximum and the present: Sensitivity to changes in lithology and hydrology. Paleoceanography 9(4):529-543.
Hammond D.E., McManus J., Berelson W.M., Meredith C., Klinkhammer G.P., Coale K.H. (2000) Diagenetic fractionation of Ge and Si in reducing sediments: The missing Ge sink and a possible mechanism to cause glacial/interglacial variations in oceanic Ge/Si. Geochim. Cosmochim. Acta 64:2453-2465.
Huybrechts P. (1990) A 3-D model for the Antarctic ice sheet: A sensitivity study on the glacial-interglacial contrast. Clim. Dyn. 5:79-92.
Huybrechts P., Oerlemans J. (1990) Response of the Antarctic ice sheet to future greenhouse warming. Clim. Dyn. 5:93-102.
Huybrechts P., T'siobbel S. (1995) Thermomechanical modelling of Northern Hemisphere ice sheets with a two-level mass-balance parameterization. Ann. Glaciol. 21:111-116.
Huybrechts P., T'siobbel S. (1997) A three-dimensional climate-ice-sheet model applied to the Last Glacial Maximum. Ann. Glaciol. 25:333-339.
Huybrechts P., Letreguilly A., Reeh N. (1991) The Greenland ice sheet and greenhouse warming. Palaeogeogr., Palaeoclimatol., Palaeoecol. (Glob. Planet. Change Sect.) 89:399-412.
Jacobs S.S., Helmer H.H., Doake C.S.M., Jenkins A., Frolich R.M. (1992) Melting of ice shelves and the mass balance of Antarctica. J. Glaciol. 38:375-387.
Jones I.W., Munhoven G., Tranter M. (1999) Comparative fluxes of HCO3- and Si from glaciated and non-glaciated terrain during the last deglaciation. Interactions Between the Cryosphere, Climate and Greenhouse Gases , Tranter, M., Armstrong, R., Brun, E., Jones, G., Sharp, M., Williams, M. (Eds.). IAHS, Wallingford; 267-272.
King S.L., Froelich P.N., Jahnke R.A. (2000) Early diagenesis of germanium in sediments of the Antarctic South Atlantic: In search of the missing Ge sink. Geochim. Cosmochim. Acta 64:1375-1390.
Kleypas J.A., Buddemeier R.W., Archer D., Gattuso J.-P., Langdon C., Opdyke B.N. (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118-120.
Kump L.R., Alley R.B. (1994) Global chemical weathering on glacial time scales. Material Fluxes on the Surface of the Earth , National Research Council, Panel on Global Surficial Geofluxes (Eds.). National Academy Press, Washington, DC; 46-60.
Kutzbach J., Behling P., Selin R. CCM1 General Circulation Model output data set. IGBP PAGES/WDC-A for Paleoclimatology Data Contrib. Ser. #96-027, NOAA/NGDC Paleoclimatology Program, Boulder, CO; 1996. ftp://ftp.ngdc.noaa.gov/paleo/gcmoutput/ccml
Kutzbach J.E., Gallimore R., Harrison S., Behling P., Selin R., Opdyke B.N. (1998) Climate and biome simulations for the past 21,000 years. Quat. Sci. Rev. 17(6-7):473-506.
Ludwig W., Amiotte-Suchet P., Probst J.-L. (1999) Enhanced chemical weathering of rocks during the last glacial maximum: A sink for atmospheric CO2?. Chem. Geol. 159(1-4):147-161.
Mortlock R.A., Froelich P.N. (1987) Continental weathering of germanium: Ge/Si in the global river discharge. Geochim. Cosmochim. Acta 51:2075-2082.
Mortlock R.A., Charles C.D., Froelich P.N., Zibello M.A., Saltzman J., Hays J.D., Burkle L.H. (1991) Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351:220-223.
Munhoven G. Modelling Glacial - Interglacial Atmospheric CO2 Variations: The Role of Continetal Weathering, PhD thesis, Université de Liège, Liège; 1997.
Munhoven G., François L.M. (1994) Glacial - Interglacial changes in continental weathering: Possible implications for atmospheric CO2. Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change , Zahn, R., Pedersen, T.F., Kaminski, M.A., Labeyrie, L. (Eds.). Springer-Verlag, Berlin; 39-58.
Munhoven G., François L.M. (1996) Glacial - Interglacial variability of atmospheric CO2 due to changing continental silicate rock weathering: A model study. J. Geophys. Res. 101(D16):21423-21437.
Murnane R.J., Stallard R.F. (1990) Germanium and silicon in rivers of the Orinoco drainage basin. Nature 344:749-752.
Opdyke B.N., Walker J.C.G. (1992) Return of the coral reef hypothesis: Basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2. Geology 20:733-736.
Peltier W.R. (1994) Ice age paleotopography. Science 265:195-201.
Petit J.-R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429-436.
Reeh N. (1989) Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung 59:113-128.
Sanyal A., Hemming N.G., Hanson G.H., Broecker W.S. (1995) Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera. Nature 373:234-236.
Siegenthaler U. (1993) Modelling the present-day carbon cycle. The Global Carbon Cycle , Heimann, M. (Ed.). Springer-Verlag, Berlin; 367-395.
Walker J.C.G., Opdyke B.N. (1995) Influence of variable rates of neritic carbonate deposition on atmospheric carbon dioxide and pelagic sediments. Paleoceanography 10(3):415-427.