Article (Scientific journals)
Glacial-interglacial changes of continental weathering: estimates of the related CO2 and HCO3- flux variations and their uncertainties
Munhoven, Guy
2002In Global and Planetary Change, 33 (1-2), p. 155-176
Peer Reviewed verified by ORBi
 

Files


Full Text
Munhoven.GPC-2002.pdf
Publisher postprint (262.35 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
carbon dioxide; chemical weathering; runoff; Last Glacial Maximum; numerical models
Abstract :
[en] A range of estimates for the glacial-interglacial variations in CO, consumption and HCO3- production rates by continental weathering processes were calculated with two models of continental weathering: the Gibbs and Kump Weathering Model (GKWM) [Paleoceanography 9(4) (1994) 529] and an adapted version of Amiotte Suchet and Probst's Global Erosion Model for CO2 Consumption (GEM-CO2) [C. R, Acad. Sci. Paris, Ser. 11317 (1993) 615; Tellus 47B (1995) 273]. Both models link CO2 consumption and HCO3- production rates to the global distributions of lithology and runoff. A spectrum of 16 estimates for the runoff distribution at the Last Glacial Maximum (LGM) was constructed on the basis of two different data sets for present-day runoff and climate results from eight GCM climate simulation experiments carried out in the framework of the Paleo Modelling Intercomparison Project (PMIP). With these forcings, GKWM produced 3.55-9.0 Tmol/year higher and GEM-CO2 4.7-13.25 Tmol/year higher global HCO3- (1 Tmol=10(12) mol) production rates at the LGM, Mean variations (plus/minus one standard error of the mean with 7 df) were 6.2+/-0.6 and 9.4+/-1.0 Tmol/year, respectively. The global CO2 consumption rates obtained with GKWM were 1.05-4.5 Tmol/year (mean: 2.8+/-0.4 Tmol/year) higher at the LGM than at present. With GEM-CO2 this increase was 1.95-7.15 Tmol/year (mean: 4.8+/-0.6 Tmol/year). The large variability in the changes obtained with each weathering model was primarily due to the variability in the GCM results. The increase in the CO2 consumption rate due to continental shelf exposure at the LGM was always more than 60% larger than its reduction due to ice cover. For HCOT production rates, the increase related to shelf exposure was always more than twice as large as the decrease due to ice cover. Flux variations in the areas exposed both now and at the LGM were, in absolute value, always more than 3.5 times lower than those in the shelf environment. The calculated CO2 consumption rates by carbonate weathering were consistently higher at the LGM, by 2.45-4.5 Tmol/year (mean: 3.4+/-0.2 Tmol/year) according to GKWM and by 2.75-6.25 Tmol/year (mean: 4.6+/-0.4 Tmol/year) according to GEM-CO, For silicate weathering, GKWM produced variations ranging between a 1.9 Tmol/year decrease and a 0.4 Tmol/year increase for the LGM (mean variation: -0.7+/-0.2 Tmol/year); GEM-CO, produced variations ranging between a 0.8 Tmol/year decrease and a 1.05 Tmol/year increase (mean variation: +0.2+/-0.2 Tmol/year). In the mean, the calculated variations of CO2 and HCO3- fluxes would contribute to reduce atmospheric p(CO2) by 5.7+/-1.3 ppmv (GKWM) or 3 12.1+/-1.7 ppmv (GEM-CO2), which might thus represent a non-negligible part of the observed glacial interglacial variation of similar to 75 ppmv. (C) 2002 Elsevier Science B.V. All rights reserved.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Munhoven, Guy ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) - Pétrologie et géochimie endogènes
Language :
English
Title :
Glacial-interglacial changes of continental weathering: estimates of the related CO2 and HCO3- flux variations and their uncertainties
Publication date :
2002
Journal title :
Global and Planetary Change
ISSN :
0921-8181
Publisher :
Elsevier Science Bv, Amsterdam, Netherlands
Special issue title :
The global carbon cycle and its changes over glacial–interglacial cycles
Volume :
33
Issue :
1-2
Pages :
155-176
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
Available on ORBi :
since 17 January 2012

Statistics


Number of views
81 (2 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
86
Scopus citations®
without self-citations
78
OpenCitations
 
86

Bibliography


Similar publications



Contact ORBi