[en] The glacial/interglacial rise in atmospheric pCO(2) is one of the best known changes in paleoclimate research, yet the cause for it is still unknown. Forcing the coupled ocean-atmosphere-biosphere box model of the global carbon cycle BICYCLE with proxy data over the last glacial termination, we are able to quantitatively reproduce transient variations in pCO(2) and its isotopic signatures (delta C-13, Delta C-14) observed in natural climate archives. The sensitivity of the Box model of the Isotopic Carbon cYCLE ( BICYCLE) to high or low latitudinal changes is comparable to other multibox models or more complex ocean carbon cycle models, respectively. The processes considered here ranked by their contribution to the glacial/interglacial rise in pCO(2) in decreasing order are: the rise in Southern Ocean vertical mixing rates (> 30 ppmv), decreases in alkalinity and carbon inventories (> 30 ppmv), the reduction of the biological pump (similar to 20 ppmv), the rise in ocean temperatures (15 - 20 ppmv), the resumption of ocean circulation (15 - 20 ppmv), and coral reef growth (< 5 ppmv). The regrowth of the terrestrial biosphere, sea level rise and the increase in gas exchange through reduced sea ice cover operate in the opposite direction, decreasing pCO(2) during Termination I by similar to 30 ppmv. According to our model the sequence of events during Termination I might have been the following: a reduction of aeolian iron fertilization in the Southern Ocean together with a breakdown in Southern Ocean stratification, the latter caused by rapid sea ice retreat, trigger the onset of the pCO(2) increase. After these events the reduced North Atlantic Deep Water (NADW) formation during the Heinrich 1 event and the subsequent resumption of ocean circulation at the beginning of the Bolling-Allerod warm interval are the main processes determining the atmospheric carbon records in the subsequent time period of Termination I. We further deduce that a complete shutdown of the NADW formation during the Younger Dryas was very unlikely. Changes in ocean temperature and the terrestrial carbon storage are the dominant processes explaining atmospheric d13C after the Bolling-Allerod warm interval.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Köhler, Peter; Alfred Wegener Institute for Polar and Marine Research - AWI
Fischer, Hubertus; Alfred Wegener Institute for Polar and Marine Research - AWI
Munhoven, Guy ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) - Pétrologie et géochimie endogènes
Zeebe, Richard E; Alfred Wegener Institute for Polar and Marine Research - AWI
Language :
English
Title :
Quantitative interpretation of atmospheric carbon records over the last glacial termination
Publication date :
2005
Journal title :
Global Biogeochemical Cycles
ISSN :
0886-6236
eISSN :
1944-9224
Publisher :
Amer Geophysical Union, Washington, United States - District of Columbia
Volume :
19
Issue :
4
Pages :
GB4020
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
RESPIC (Programme DEKLIM)
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique BMBF - Bundesministerium für Bildung und Forschung
Adams, J. M., and H. Faure (1998), A new estimate of changing carbon storage on land since the Last Glacial Maximum, based on global land ecosystem reconstruction, Global Planet. Change, 16-17, 3-24.
Adkins, J. F., K. McIntyre, and D. P. Schrag (2002), The salinity, temperature, and δ18O of the glacial deep ocean, Science, 298, 1769-1773.
Aeschbach-Hertig, W., F. Peeters, U. Beyerle, and R. Kipfer (2000), Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air, Nature, 405, 1040-1044.
Alley, R. B., and P. U. Clark (1999), The deglaciation of the Northern Hemisphere: A global perspective, Annu. Rev. Earth Planet. Sci., 27, 149-182.
Amiotte-Suchet, P., J.-L. Probst, and W. Ludwig (2003), Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans, Global Biogeochem. Cycles, 17(2), 1038, doi:10.1029/2002GB001891.
Anderson, R. F., N. Kumar, R. A. Mortlock, P. N. Froelich, P. Kubik, B. Dittrich-Hannen, and M. Suter (1998), Late-Quaternary changes in productivity of the Southern Ocean, J. Mar. Syst., 17, 497-514.
Anderson, R. F., Z. Chase, M. Q. Fleisher, and J. Sachs (2002). The Southern Oceans's biological pump during the Last Glacial Maximum, Deep Sea Res., Part II, 49, 1909-1938.
Archer, D. (1991), Modelling the calcite lysocline, J. Geophys. Res., 96(C9), 17,037-17,050.
Archer, D., and E. Maier-Reimer (1994), Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration, Nature, 367, 260-263.
Archer, D., H. Kheshgi, and E. Maier-Reimer (1998), Dynamics of fossil fuel neutralization by marine CaCO3, Global Biogeochem. Cycles, 12(2), 259-276.
Archer, D., A. Winguth, D. Lea, and N. Mahowald (2000a), What caused the glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38(2), 159-189.
Archer, D. E., G. Eshel, A. Winguth, W. Broecker, R. Pierrehumbert, M. Tobis, and R. Jacob (2000b), Atmospheric pCO2 sensitivity to the biological pump in the ocean, Global Biogeochem. Cycles, 14(4), 1219-1230.
Archer, D. E., P. A. Martin, J. Milovich, V. Brovkin, G.-K. Plattner, and C. Ashendel (2003), Model sensitivity in the effect of Antarctic sea ice and stratification on atmospheric pCO2, Paleoceanography, 18(1), 1012, doi:10.1029/2002PA000760.
Barnola, J. M., D. Raynaud, Y. S. Korotkevich, and C. Lorius (1987), Vostok ice core provides 160,000-year record of atmospheric CO2, Nature, 329, 408-414.
Beck, J. W., D. A. Richards, R. L. Edwards, B. W. Silverman, P. L. Smart, D. J. Donahue, S. Hererra-Osterheld, G. S. Burr, L. Calsoyas, A. J. T. Jull, and D. Biddulph (2001), Extremely large variations of atmospheric 14C concentration during the last glacial period, Science, 292, 2453-2458.
Becquey, S., and R. Gersonde (2003), A 0.55-Ma paleotemperature record from the subantarctic zone: Implications for the Antarctic Circumpolar Current development, Paleoceanography, 18(1), 1014, doi:10.1029/ 2000PA000576.
Berger, W. H. (1968), Planktonic foraminifera: Selective solution and paleoclimatic interpretation, Deep Sea Res., 15, 31-43.
Berger, W. H. (1982), Increase of carbon dioxide in the atmosphere during deglaciation: The coral reef hypothesis, Naturewissenschaften, 69, 87-88.
Berger, W. H., and R. S. Keir (1984), Glacial-Holocene changes in atmospheric CO2 and the deep-sea record, in Climate Processes and Climate Sensitivity, Geophys. Monogr. Ser., vol. 29, edited by J. E. Hansen and T. Takahashi, pp. 337-351, AGU, Washington, D. C.
Bopp, L., K. E. Kohfeld, and C. L. Quere (2003), Dust impact on marine biota and atmospheric CO2 during glacial periods, Paleoceanography, 18(2), 1046, doi:10.1029/2002PA000810.
Boyle, E. A. (1992), Cadmium and δ13C paleochemical ocean distributions during the stage 2 glacial maximum, Annu. Rev. Earth Planet. Sci., 20, 245-287.
Broecker, W. S., and G. M. Henderson (1998), The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes, Paleoceanography, 13(4), 352-364.
Broecker, W. S., and T. H. Peng (1986), Carbon Cycle 1985: Glacial to interglacial changes in the operation of the global carbon cycle, Radiocarbon, 28, 309-327.
Broecker, W. S., and T.-H. Peng (1987), The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change, Global Biogeochem. Cycles, 1(1), 15-29.
Broecker, W. S., and T. Takahashi (1978), The relationship between lysocline depth and in situ carbonate ion concentration, Deep Sea Res., 25, 65-95.
Broecker, W., J. Lynch-Stieglitz, D. Archer, M. Hofmann, E. Maier-Reimer, O. Marchal, T. Stocker, and N. Gruber (1999), How strong is the Harvardton-Bear constraint?, Global Biogeochem. Cycles, 13(4), 817-820.
Broecker, W., S. Barker, E. Clark, I. Hajdas, G. Bonani, and L. Stott (2004), Ventilation of the glacial deep Pacific Ocean, Science, 306, 1169-1172.
Brook, E. J., T. Sowers, and J. Orchardo (1996), Rapid variations in atmospheric methane concentration during the past 110,000 years, Science, 273, 1087-1091.
Brovkin, V., M. Hofmann, J. Bendtsen, and A. Ganopolski (2002), Ocean biology could control atmospheric δ13C during glacial-interglacial cycle, Geochem. Geophys. Geosyst., 3(5), 1027, doi:10.1029/2001GC000270.
Brzezinski, M. A., C. J. Pride, V. M. Franck, D. M. Sigman, J. L. Sarmiento, S. K. Matsumoto, N. Gruber, G. H. Rau, and K. H. Coale (2002), A switch from Si(OH)4 to NO3- depletion in the glacial Southern Ocean, Geophys. Res. Lett., 29(12), 1564, doi:10.1029/ 2001GL014349.
Cavalieri, D. J., P. Gloersen, C. L. Parkinson, J. C. Comiso, and H. J. Zwally (1997), Observed hemispheric asymmetry in global sea ice changes, Science, 278, 1104-1106.
Charles, C. D., and R. G. Fairbanks (1990), Glacial to interglacial changes in the isotopic gradients of Southern Ocean surface water, in Geological History of the Polar Oceans: Artic Versus Antarctic, edited by U. Bleil and J. Thiede, pp. 519-538, Springer, New York.
Charles, C. D., and R. G. Fairbanks (1992), Evidence from Southern Ocean sediments for the effect of North Atlantic deep-water flux on climate, Nature, 355, 416-419.
Chase, Z., R. F. Anderson, M. Q. Fleisher, and P. W. Kubik (2003), Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years, Deep Sea Res., Part II, 50, 799-832.
Clark, P. U., N. G. Pisias, T. F. Stocker, and A. J. Weaver (2002), The role of the thermohaline circulation in abrupt climate change, Nature, 415, 863-869.
CLIMAP (1976), The surface of the ice-age Earth, Science, 191, 1131-1137.
Conkright, M., S. Levitus, and T. Boyer (1994), World Ocean Atlas, vol. 1, Nutrients, NOAA Atlas NESDIS 1, Natl. Oceanic and Atmos. Admin., Silver Spring, Md.
Cramer, W., et al. (2001), Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models, Global Change Biol., 7, 357-375.
Crosta, X., and A. Shemesh (2002), Reconciling down core anticorrelation of diatom carbon and nitrogen isotopic ratios from the Southern Ocean, Paleoceanography, 17(1), 1010, doi:10.1029/2000PA000565.
Crosta, X., J.-J. Pichon, and L. H. Burckle (1998a), Application of modern analog technique to marine Antarctic diatoms: Reconstruction of maximum sea-ice extent at the Last Glacial Maximum, Paleoceanography, 13(3), 284-297.
Crosta, X., J.-J. Pichon, and L. H. Burckle (1998b), Reappraisal of Antarctic seasonal sea-ice extent at the Last Glacial Maximum, Geophys. Res. Lett., 25(14), 2703-2706.
Crowley, T. J (1983), Calcium-carbonate preservation patterns in the central North Atlantic during the last 150,000 years, Mar. Geol., 51, 1-14.
Curry, W. B., and G. P. Lohmann (1986), Late Quaternary carbonate sedimentation at the Sierra Leone rise (eastern equatorial Atlantic Ocean), Mar. Geol., 70, 223-250.
Curry, W. B., and D. W. Oppo (2005), Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean, Paleoceanography, 20, PA1017, doi:10.1029/ 2004PA001021.
Curry, W. B., J. C. Duplessy, L. D. Labeyrie, and N. J. Shackleton (1988), Changes in the distribution of δ13C of deep water ΣCO2 between the last glaciation and the Holocene, Paleoceanography, 3(3), 317-341.
Delaygue, G., T. Stocker, F. Joos, and G.-K. Plattner (2003), Simulation of atmospheric radiocarbon during abrupt oceanic circulation changes: Trying to reconcile models and reconstructions, Quat. Sci. Rev., 22, 1647-1658.
Doney, S. C., et al. (2004), Evaluating global ocean carbon models: The importance of realistic physics, Global Biogeochem. Cycles, 18, GB3017, doi:10.1029/2003GB002150.
Duplessy, J. C., N. J. Shackleton, R. G. Fairbanks, L. Labeyrie, D. Oppo, and N. Kallel (1988), Deep water source variations during the last climatic cycle and their impact on the global deepwater circulation, Paleoceanography, 3(3), 343-360.
Emanuel, W. R., G. G. Killough, W. M. Post, and H. H. Shugart (1984), Modeling terrestrial ecosystems in the global carbon cycle with shifts in carbon storage capacity by land-use change, Ecology, 65, 970-983.
Eyer, M. (2004), Highly resolved δ13C measurements on CO2 in air from Antarctic ice cores, Ph.D. thesis, Univ. of Bern, Bern, Switzerland.
Fairbanks, R. G. (1990), The age and origin of the Younger Dryas climate event in Greenland ice cores, Paleoceanography, 5(6), 937-948.
Farrell, J. W., and W. L. Prell (1989), Climate change and CaCO3 preservation: An 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean, Paleoceanography, 4(4), 447-466.
Fichefet, T., B. Tartinville, and H. Goosse (2003), Antarctic sea ice variability during 1958-1999: A simulation with a global ice-ocean model, J. Geophys. Res., 108(C3), 3102, doi:10.1029/2001JC001148.
Fischer, H, M. Wahlen, J. Smith, D. Mastroianni, and B. Deck (1999), Ice core records of atmospheric CO2 around the last three glacial terminations, Science, 283, 1712-1714.
François, R., M. A. Altabet, E.-F. Yu, D. M. Sigman, M. P. Pacon, M. Frankl, G. Bohrmann, G. Bareille, and L. D. Labeyrie (1997), Contribution of Southern Ocean surface-water stratification to low atmopsheric CO2 concentrations during the last glacial period, Nature, 389, 929-935.
Frank, M., R. Gersonde, M. R. van der Loeff, G. B. C. C. Nürnberg, P. M. Kubik, M. Suter, and A. Mangini (2000), Similar glacial and interglacial export bioproductivity in the Atlantic sector of the Southern Ocean: Multiproxy evidence and implications for glacial atmospheric CO2, Paleoceanography, 15(6), 642-658.
Ganachaud, A., and C. Wunsch (2000), Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data, Nature, 408, 453-457.
Gersonde, R., X. Crosta, A. Abelmann, and L. Armand (2005), Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum - A circum-Antarctic view based on siliceous microfossil records, Quat. Sci. Rev., 24, 869-896.
Gildor, H., E. Tziperman, and J. R. Toggweiler (2002), Sea ice switch mechanism and glacial-interglacial CO2 variations, Global Biogeochem. Cycles, 16(3), 1032, doi:10.1029/2001GB001446.
Gnanadesikan, A, R. D. Slater, N. Gruber, and J. L. Sarmiento (2002), Oceanic vertical exchange and new production: A comparison between models and observations, Deep Sea Res., Part II, 49, 363-401.
Grootes, P. M., and M. Stuiver (1997), Oxygen 18/16 variability in Greenland snow and ice with 103 to 105-year time resolution, J. Geophys. Res., 102(C12), 26,455-26,470.
Guilderson, T. P., R. G. Fairbanks, and J. L. Rubenstone (2001), Tropical Atlantic coral oxygen isotopes: Glacial-interglacial sea surface temperature and climate change, Mar. Geol., 172, 75-89.
Harvey, L. D. D. (2001), A quasi-one-dimensional coupled climate-carbon cycle model: 2. The carbon cycle component, J. Geophys. Res., 106(C10), 22,355-22,372.
Heimann, M., and E. Maier-Reimer (1996), On the relations between the oceanic uptake of CO2 and its carbon isotops, Global Biogeochem. Cycles, 10(1), 89-110.
Heimann, M., and P. Monfray (1989), Spatial and temporal variation of the gas exchange coefficient for CO2: 1. Data analysis and global validation, Rep. 31, Max-Planck-Inst. for Meteorol., Hamburg, Germany.
Heinze, C., E. Maier-Reimer, and K. Winn (1991), Glacial pCO2 reduction by the world ocean: Experiments with the Hamburg Carbon Cycle Model, Paleoceanography, 6(4), 395-430.
Hemming, S. R. (2004), Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint, Rev. Geophys., 42, RG1005, doi:10.1029/2003RG000128.
Hodell, D. A., C. D. Charles, J. H. Curtis, P. Graham Mortyn, U. S. Ninnemann, and K. A. Venz (2002), Data report: Oxygen isotope stratigraphy of ODP Leg 177 sites 1088, 1089, 1090, 1093, and 1094, in Proceedings of the Ocean Drilling Program, Scientific Results, vol. 177, edited by R. Gersonde, D. A. Hodell, and P. Blum, Table T2, Texas A&M, College Station, Texas. (Available online at http:// wwwodp.tamu.edu/publications/177_SR/synth/synth.htm)
Hodell, D. A., K. A. Venz, C. D. Charles, and U. S. Ninnemann (2003), Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean, Geochem. Geophys. Geosyst., 4(1), 1004, doi:10.1029/2002GC000367.
Howard, W. R, and W. L. Prell (1994), Late Quaternary CaCO3 production and preservation in the Southern Ocean: Implications for oceanic and atmospheric carbon cycling, Paleoceanography, 9(3), 453-482.
Hughen, K., S. Lehman, J. Southon, J. Overpeck, O. Marchal, C. Herring, and J. Turnbull (2004), 41C activity and global carbon cycle changes over the past 50,000 years, Science, 303, 202-207.
Ito, T., J. Marshall, and M. Follows (2004), What controls the uptake of transient tracers in the Southern Ocean?, Global Biogeochem. Cycles, 18, GB2021, doi:10.1029/2003GB002103.
Joos, F., S. Gerber, I. C. Prentice, B. L. Otto-Bliesner, and P. J. Valdes (2004), Transient simulations of Holocenic atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum, Global Biogeochem. Cycles, 18, GB2002, doi:10.1029/2003GB002156.
Jouzel, J., et al. (2001), A new 27 ky high resolution East Antarctic climate record, Geophys. Res. Lett., 28, 3199-3202.
Kageyama, M., O. Peyron, S. Pinot, P. Tarasov, J. Guiot, S. Jousaume, and G. Ramstein (2001), The Last Glacial Maximum climate over Europe and western Siberia: A PMIP comparsion between models and data, Clim. Dyn., 17, 23-43.
Kaplan, J. O., L C. Prentice, W. Knorr, and P. J. Valdes (2002), Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum, Geophys. Res. Lett., 29(22), 2074, doi:10.1029/ 2002GL015230.
Keir, R. S (1988), On the late Pleistocene ocean geochemistry and circulation, Paleoceanography, 3(4), 413-445.
Key, R. M., A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. L. Bullister, R. A. Feely, F. J. Millero, C. Mordy, and T.-H. Peng (2004), A global ocean carbon climatology: Results from global data analysis project (GLODAP), Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/ 2004GB002247.
Kim, S.-J., G. M. Flato, G. J. Boer, and N. A. McFarlane (2002), A coupled climate model simulation of the Last Glacial Maximum: Part 1. Transient multi-decadal response, Clim. Dyn., 19, 515-537.
Klaas, C., and D. E. Archer (2002), Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio, Global Biogeochem. Cycles, 16(4), 1116, doi:10.1029/2001GB001765.
Knorr, G, and G. Lohmann (2003), Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation, Nature, 424, 532-536.
Knox, F., and M. B. McElroy (1984), Changes in atmospheric CO2: Influence of the marine biota at high latitude, J. Geophys. Res., 89(D3), 4629-4637.
Knutti, R., J. Flückiger, T. F. Stocker, and A. Timmermann (2004), Strong hemispheric coupling of glacial climate through continental freshwater discharge and ocean circulation, Nature, 430, 851-856.
Koeve, W. (2002), Upper ocean carbon fluxes in the Atlantic Ocean: The importance of the POC:PIC ratio, Global Biogeochem. Cycles, 16(4), 1056, doi:10.1029/2001GB001836.
Kohfeld, K. E, C. L. Quere, S. Harrison, and R. F. Anderson (2005), Role of marine biology in glacial-interglacial CO2 cycles, Science, 308, 74-78.
Köhler, P., and H. Fischer (2004), Simulating changes in the terrestrial biosphere during the last glacial/interglacial transition, Global Planet. Change, 43(1-2), 33-55, doi:10.1016/ j.gloplacha.2004.02.005.
Köhler, P., F. Joos, S. Gerber, and R. Knutti (2005), Simulated changes in vegetation distribution, land carbon storage, and atmospheric CO2 in response to a collapse of the North Atlantic thermohaline circulation, Clim. Dyn., 25, 689-708, doi:10.1007/ s00382-005-0058-8.
Körtzinger, A., J. I. Hedges, and P. D. Quay (2001), Redfield ratios revisited: Removing the biasing effect of anthropogenic CO2, Limnol. Oceanogr., 46, 946-970.
Kroopnick, P. M. (1985), The distribution of 13C of ΣCO2 in the world oceans, Deep Sea Res., Part A, 32, 57-84.
Kumar, N., R. F. Anderson, R. A. Mortlock, P. N. Froelich, P. Kubik, B. Dittrich-Hannen, and M. Suter (1995), Increased biological productivity and export production in the glacial Southern Ocean, Nature, 378, 675-680.
Kutzbach, J., R. Gallimore, S. Harrison, P. Behling, R. Selin, and F. Laarif (1998), Climate and biome simulations for the past 21,000 years, Quat. Sci. Rev., 17, 473-506.
Labeyrie, L. D., J. C. Duplessy, and P. L. Blanc (1987), Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years, Nature, 327, 477-482.
Laj, C., C. Kissel, A. Mazaud, E. Michel, R. Muscheler, and J. Beer (2002), Geomagnetic field intensity, North Atlantic Deep Water circulation and atmospheric δ14C during the last 50 kyr, Earth Planet. Sci. Lett., 200, 177-190.
Lea, D. W., D. K. Pak, and H. J. Spero (2000), Climate impact of late Quaternary equatorial Pacific sea surface temperature variations, Science, 289, 1719-1724.
LeGrand, P., and K. Alverson (2001), Variations in atmospheric CO2 during glacial cycles from an inverse ocean modelling perspective, Paleoceanography, 16(6), 604-616.
Leuenberger, M. C., M. Eyer, P. Nyfeler, B. Stauffer, and T. F. Stocker (2003), High-resolution δ13C measurements on ancient air extracted from less than 10 cm3 of ice, Tellus, Ser. B, 55, 138-144.
Levitus, S., and T. Boyer (1994a), World Ocean Atlas, vol. 2, Oxygen, NOAA Atlas NESDIS 2, Natl. Oceanic and Atmos. Admin., Silver Spring, Md.
Levitus, S., and T. Boyer (1994b), World Ocean Atlas, vol. 4, Temperature, NOAA Atlas NESDIS 4, Natl. Oceanic and Atmos. Admin., Silver Spring, Md.
Levitus, S., R. Burgett, and T. Boyer (1994), World Ocean Atlas, vol. 3, Salinity, NOAA Atlas NESDIS 3, Natl. Oceanic and Atmos. Admin., Silver Spring, Md.
Marchal, O., T. F. Stocker, and F. Joos (1998a), A latitude-depth, circulation-biogeochemical ocean model for paleoclimate studies: Development and sensitivities, Tellus, Ser. B, 50, 290-316.
Marchal, O., T. F. Stocker, and F. Joos (1998b), Impact of oceanic reorganizations on the ocean carbon cycle and atmospheric carbon dioxide content, Paleoceanography, 13(3), 225-244.
Marchal, O., T. F. Stocker, F. Joos, A. Indermühle, T. Blunier, and J. Tschumi (1999), Modelling the concentration of atmospheric CO2 during the Younger Dryas climate event, Clim. Dyn., 15, 341-354.
Marchal, O., T. F. Stocker, and R. Muscheler (2001), Atmospheric radiocarbon during the Yonger Dryas: Production, ventilation, or both?, Earth Planet. Sci. Lett., 185, 383-395.
Martin, J. H. (1990), Glacial-interglacial CO2 change: The iron hypothesis, Paleoceanography, 5(1), 1-13.
Martin, P. A., D. W. Lea, Y. Rosenthal, N. J. Shackleton, M. Sarnthein, and T. Papenfuss (2002), Quaternary deep sea temperature histories derived from benthic foraminferal Mg/Ca, Earth Planet. Sci. Lett., 198, 193-209.
Masarik, J., and J. Beer (1999), Simulation of particle fluxes of cosmogenic nuclide production in the Earth's atmosphere, J. Geophys. Res., 104(D10), 12,099-12,111.
Matsumoto, K., J. L. Sarmiento, and M. A. Brzezinski (2002), Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmospheric pCO2, Global Biogeochem. Cycles, 16(3), 1031, doi:10.1029/ 2001GB001442.
McManus, J. F, D. W. Oppo, and J. L. Cullen (1999), A 0.5-million-year record of millennial-scale climate variability in the North Atlantic, Science, 283, 971-975.
McManus, J. F., R. Francois, J.-M. Gheradi, L. D. Keigwin, and S. Brown-Leger (2004), Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes, Nature, 428, 834-837.
McPhaden, M. J., and D. Zang (2002), Slowdown of the meridional overturning circulation in the upper Pacific Ocean, Nature, 415, 603-608.
Meese, D. A., A. Gow, R. Alley, G. Zielinski, P. Grootes, M. Ram, K. Taylor, P. Mayewski, and J. Bolzan (1997), The Greenland Ice Sheet Project 2 depth-age scale: Methods and results, J. Geophys. Res., 102(C12), 26,411-26,423.
Meissner, K. J., A. Schmittner, A. J. Weaver, and J. F. Adkins (2003), Ventilation of the North Atlantic Ocean during the Last Glacial Maximum: A comparison between simulated and observed radiocarbon ages, Paleoceanography, 18(2), 1023, doi:10.1029/2002PA000762.
Millero, F. J, K. Lee, and M. Roche (1998), Distribution of alkalinity in the surface waters of the major oceans, Mar. Chem., 60, 111-130.
Milliman, J. D. (1993), Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state, Global Biogeochem. Cycles, 7(4), 927-957.
Mix, A. C., N. G. Pisias, R. Zahn, R. C. Lopez, and K. Nelson (1991), Carbon 13 in Pacific deep and inter mediate waters, 0-370 ka: Implications for ocean circulation and Pleistocene CO2, Paleoceanography, 6(2), 205-226.
Mix, A. C., J. Le, and N. J. Shackleton (1995), Benthic foraminiferal stable isotope stratigraphy of Site 846: 0-1.8 Ma, Proc. Ocean Drill. Program Sci. Results, 138, 839-854.
Monnin, E., A. Indermühle, A. Dällenbach, J. Flückiger, B. Stauffer, T. F. Stocker, D. Raynaud, and J.-M. Barnola (2001), Atmospheric CO2 concentrations over the last glacial termination, Science, 291, 112-114.
Mook, W. G. (1986), 13C in atmospheric CO2, Neth. J. Sea Res., 20(2/ 3), 211-223.
Moore, J. K., M. R. Abbott, J. G. Richman, and D. M. Nelson (2000), The Southern Ocean at the Last Glacial Maximum: A strong sink for atmospheric carbon dioxide, Global Biogeochem. Cycles, 14(1), 455-475.
Morales-Maqueda, M. A., and S. Rahmstorf (2002), Did Antarctic sea-ice expansion cause glacial CO2 decline?, Geophys. Res. Lett., 29(1), 1011, doi:10.1029/2001GL013240.
Mulitza, S., H. Arz, S. K. von Mücke, C. Moss, H. S. Niebler, J. Pätzold, and M. Segl (1999), The South Atlantic Carbon Isotope record of planktic foraminifera, in Use of Proxies in Paleoceanography: Examples From the South Atlantic, edited by G. Fischer and G. Wefer, pp. 427-445, Springer, New York.
Munhoven, G. (1997), Modelling glacial-interglacial atmospheric CO2 variations: The role of continental weathering, Ph.D. thesis, Univ. de Liège, Liege, Belgium.
Munhoven, G (2002), Glacial-interglacial changes of continental weathering: estimates of the related CO2 and HCO3 - flux variations and their uncertainties, Global Planet. Change, 33, 155-176.
Munhoven, G., and L. M. François (1996), Glacial-interglacial variability of atmospheric CO2 due to changing continental silicate rock weathering: A model study, J. Geophys. Res., 101(D16), 21,423-21,437.
Muscheler, R., J. Beer, G. Wagner, C. Laj, C. Kissel, G. M. Raisbeck, F. Yiou, and P. W. Kubik (2004), Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records, Earth Planet. Sci. Lett., 219, 325-340.
Nürnberg, D., A. Müller, and R. R. Schneider (2000), Paleo-sea surface temperature calculations in the equatorial east Atlantic from Mg/ Ca ratios in planktic foraminifera: A comparison to sea surface temperature estimates from U37K', oxygen isotopes, and foraminiferal transfer function, Paleoceanography, 15(1), 124-134.
Opdyke, B. N., and J. C. G. Walker (1992), Return of the coral reef hypothesis: Basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2, Geology, 20, 733-736.
Oppo, D. W., and S. J. Lehman (1993), Mid-depth circulation of the subpolar North Atlantic during the Last Glacial Maximum, Science, 259, 1148-1152.
Paillard, D., and F. Parrenin (2004), The Antarctic ice sheet and the triggering of deglaciations, Earth Planet. Sci. Lett., 227, 263-271.
Passow, U. (2004), Switching perspectives: Do mineral fluxes determine particulate organic carbon fluxes or vice versa?, Geochem. Geophys. Geosyst., 5, Q04002, doi:10.1029/2003GC000670.
Peterson, L. C., and W. L. Prell (1985), Carbonate preservation and rates of climate change: An 800 kyr record from the Indian Ocean, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist and W. S. Broecker, pp. 251-269, AGU, Washington, D. C.
Pflaumann, U., et al. (2003), Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP2000, Paleoceanography, 18(3), 1065, doi:10.1029/2002PA000774.
Prieto, F. J. M. and F. J. Millero (2002), The values of pK1 + pK2 for the dissolution of carbonic acid in seawater, Geochim. Cosmochim. Acta, 66, 2529-2540.
Qiu, B., and R. Huang (1995), Ventilation of the North Atlantic and North Pacific: Subduction versus obduction, J. Phys. Oceanogr., 25, 2374-2390.
Rahmstorf, S. (2002), Ocean circulation and climate during the past 120,000 years, Nature, 419, 207-214.
Rau, G. H., U. Riebesell, and D. Wolf-Gladrow (1996), A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake, Mar. Ecol. Prog. Ser., 133, 275-285.
Rau, G. H., U. Riebesell, and D. Wolf-Gladrow (1997), CO2aq-dependent photosynthetic 13C fractionation in the ocean: A model versus measurements, Global Biogeochem. Cycles, 11(2), 267-278.
Ridgewell, A. J. (2001), Glacial-interglacial pertubations in the global carbon cycle, Ph.D. thesis, Univ. of East Anglia, Norwich, UK.
Ridgwell, A. J. (2003a), An end to the rain ratio reign?, Geochem. Geophys. Geosyst., 4(6), 1051, doi:10.1029/2003GC000512.
Ridgwell, A. J. (2003b), Implications of the glacial CO2 iron hypothesis for Quaternary climate change, Geochem. Geophys. Geosyst., 4(9), 1076, doi:10.1029/2003GC000563.
Ridgwell, A. J., and A. J. Watson (2002), Feedback between aeolian dust, climate, and atmospheric CO2 in glacial time, Paleoceanography, 17(4), 1059, doi:10.1029/2001PA000729.
Robinson, R. S., B. G. Brunelle, and D. M. Sigman (2004), Revisiting nutrient utilization in the glacial Antarctic: Evidence from a new method for diatom-bound N isotopic analysis, Paleoceanography, 19, PA3001, doi:10.1029/2003PA000996.
Röthlisberger, R., R. Mulvaney, E. W. Wolff, M. A. Hutterli, M. Bigler, S. Sommer, and J. Jouzel (2002), Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyrs and its implications for southern high-latitude climate, Geophys. Res. Lett., 29(20), 1963, doi:10.1029/2002GL015186.
Röthlisberger, R., M. Bigler, E. W. Wolff, E. Monnin, F. Joos, and M. Hutterli (2004), Ice core evidence for the extent of past atmospheric CO2 change due to iron fertilization, Geophys. Res. Lett., 31, L16207, doi:10.1029/2004GL020338.
Saltzman, J, and K. F. Wishner (1997), Zooplankton ecology in the eastern tropical Pacific oxygen minimum zone above a seamount: 1. General trend, Deep Sea Res., Part I, 44, 907-930.
Sarmiento, J. L., and J. R. Toggweiler (1984), A new model for the role of the oceans in determining atmospheric PCO2, Nature, 308, 621-624.
Sarmiento, J. L., J. C. Orr, and U. Siegenthaler (1992), A pertubation simulation of CO2 uptake in an ocean general circulation model, J. Geophys. Res., 97(C3), 3621-3645.
Sarmiento, J. L., J. Dunne, A. Gnanadesikan, R. M. Key, K. Matsumoto, and R. Slater (2002), A new estimate of the CaCO3 to organic carbon export ratio, Global Biogeochem. Cycles, 16(4), 1107, doi:10.1029/ 2002GB001919.
Sarnthein, M., U. Pflaumann, and M. Weinelt (2003), Past extent of sea ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates, Paleoceanography, 18(2), 1047, doi:10.1029/ 2002PA000771.
Schiebel, R. (2002), Planktic foraminiferal sedimentation and the marine calcite budget, Global Biogeochem. Cycles, 16(4), 1065, doi:10.1029/ 2001GB001459.
Schlitzer, R. (2000), Applying the adjoint method for biogeochemical modelling: Export of particulate organic matter in the world ocean, in Inverse Methods in Global Biogeochemical Cycles, Geophys. Monogr. Ser., vol. 114, edited by P. Kasibhatla et al., pp. 107-124, AGU, Washington, D. C.
Schlitzer, R (2002), Carbon export fluxes in the Southern Ocean: Results from inverse modeling and comparison with satellite-based estimates, Deep Sea Res., Part II, 49, 1623-1644.
Scholze, M., W. Knorr, and M. Heimann (2003), Modelling terrestrial vegetation dynamics and carbon cycling for an abrupt climate change event, Holocene, 13, 327-333.
Schulz, M., D. Seidov, M. Sarnthein, and K. Stattegger (2001), Modelling ocean-atmosphere carbon budgets during the Last Glacial Maximum - Heinrich 1 meltwater event - Bølling transition, Int. J. Earth Sci., 90, 412-425.
Siegenthaler, U., and T. Wenk (1984), Rapid atmospheric CO2 variations and ocean circulation, Nature, 308, 624-626.
Sigman, D. M., and E. A. Boyle (2000), Glacial/interglacial variations in atmospheric carbon dioxide, Nature, 407, 859-869.
Sigman, D. M., D. C. McCorkle, and W. R. Martin (1998), The calcite lysocline as a constraint on glacial/interglacial low-latitude production changes, Global Biogeochem. Cycles, 12(3), 409-427.
Slowey, N. C., and W. B. Curry (1995), Glacial-interglacial differences in circulation and carbon cycling within the upper western North Atlantic, Paleoceanography, 10(4), 715-732.
Sloyan, B. M., and S. R. Rintoul (2001), The Southern Ocean limb of the global deep overturning circulation, J. Phys. Oceanogr., 31, 143-173.
Smith, H. J., H. Fischer, M. Wahlen, D. Mastroianni, and B. Deck (1999), Dual modes of the carbon cycle since the Last Glacial Maximum, Nature, 400, 248-250.
Spero, H. J., and D. W. Lea (2002), The cause of carbon isotope minimum events on glacial terminations, Science, 296, 522-525.
Spero, H. J., J. Bijma, D. W. Lea, and B. E. Bemis (1997), Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature, 390, 497-500.
Stenni, B., V. Masson-Delmotte, S. Johnsen, J. Jouzel, A. Longinelli, E. Monnin, R. Röthlisberger, and E. Selmo (2001), An oceanic cold reversal during the last deglaciation, Science, 293, 2074-2077.
Stephens, B. B., and R. F. Keeling (2000), The influence of Antarctic sea ice on glacial-interglacial CO2 variations, Nature, 404, 171-174.
Stocker, T. F., and D. G. Wright (1996), Rapid changes in ocean
Stuiver, M., H. G. Östlund, and T. A. McConnaughey (1981), GEOSECS Atlantic and Pacific 14C distribution, in Carbon Cycle Modelling, Sci. Comm. Problems Environ. (SCOPE) Ser., vol. 16, edited by B. Bolin, pp. 201-221, John Wiley, Hoboken, N. J.
Stuiver, M., P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. A. Hughen, B. Kromer, G. McCormac, J. van der Plicht, and M. Spurk (1998), INTCAL98 radiocarbon age calibration, 24,000-0 cal BP, Radiocarbon, 40, 1041-1083.
Takahashi, T., W. S. Broecker, and A. E. Bainbridge (1981), The alkalinity and total carbon dioxide concentration in the world oceans, in Carbon Cycle Modelling, Sci. Comm. Problems Environ. (SCOPE) Ser., vol. 16, edited by B. Bolin, pp. 271-286, John Wiley, Hoboken, N. J.
Takahashi, T., et al. (2002), Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep Sea Res., Part II, 49, 1601-1622.
Toggweiler, J. R. (1999), Variation of atmospheric CO2 by ventilation of the ocean's deepest water, Paleoceanography, 14(5), 571-588.
Toggweiler, J. R., and J. L. Sarmiento (1985), Glacial to interglacial changes in atmospheric carbon dioxide: The critical role of ocean surface water in high latitudes, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist and W. S. Broecker, pp. 163-184, AGU, Washington, D. C.
Toggweiler, J. R., A. Gnanadesikan, S. Carson, R. Murnane, and J. L. Sarmiento (2003a), Representation of the carbon cycle in box models and GCMs: 1. Solubility pump, Global Biogeochem. Cycles, 17(1), 1026, doi:10.1029/2001GB001401.
Toggweiler, J. R., R. Murnane, S. Carson, A. Gnanadesikan, and J. L. Sarmiento (2003b), Representation of the carbon cycle in box models and GCMs: 2. Organic pump, Global Biogeochem. Cycles, 17(1), 1027, doi:10.1029/2001GB001841.
Vecsei, A (2004), Carbonate production on isolated banks since 20 k.a. BP: Climatic implications, Palaeogeogr. Palaeoclimatol. Palaeoecol., 214, 3-10.
Vecsei, A., and W. H. Berger (2004), Increase of atmospheric CO2 during deglaciation: Constraints on the coral reef hypothesis from patterns of deposition, Global Biogeochem. Cycles, 18, GB1035, doi:10.1029/ 2003GB002147.
Vinnikov, K. Y., A. Robock, R. J. Stouffer, J. E. Walsh, C. L. Parkinson, D. J. Cavalieri, J. F. B. Mitchell, D. Garrett, and V. F. Zakharov (1999), Global warming and Northern Hemisphere sea ice extent, Science, 286, 1934-1937.
Visser, K., R. Thunell, and L. Stott (2003), Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation, Nature, 421, 152-155.
Wanninkhof, R. (1992), Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97(C5), 7373-7382.
Watson, A. J., D. C. E. Bakker, A. J. Ridgwell, P. W. Boyd, and C. S. Law (2000), Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2, Nature, 407, 730-733.
Winguth, A. M. E., D. Archer, J.-C. Duplessy, E. Maier-Reimer, and U. Mikolajewicz (1999), Sensitivity of paleonutrient tracer distributions and deep-sea circulation to glacial boundary conditions, Paleoceanography, 14(3), 304-323.
Wunsch, C. (1984), An estimate of the upwelling rate in the equatorial Atlantic based on the distribution of bomb radiocarbon and quasigeostrophic dynamics, J. Geophys. Res., 89(C5), 7971-7978.
Zeebe, R. E., and P. Westbroek (2003), A simple model for the CaCO3 saturation state of the ocean: The Strangelove, the Neritan, and the Cretan Ocean, Geochem. Geophys. Geosyst., 4(12), 1104, doi:10.1029/ 2003GC000538.
Zeebe, R. E., and D. A. Wolf-Gladrow (2001), CO2 in Seawater: Equilibrium, Kinetics, Isotopes, Oceanogr. Book Ser., vol. 65, 346 pp., Elsevier, New York.
Zhang, J, P. D. Quay, and D. O. Wilbur (1995), Carbon isotope fractionation during gas-water exchange and dissolution of CO2, Geochim. Cosmochim. Acta, 59, 107-114.