[en] We are investigating the late Holocene rise in CO2 by performing four experiments with the climate-carbon-cycle model CLIMBER2-LPJ. Apart from the deep sea sediments, important carbon cycle processes considered are carbon uptake or release by the vegetation, carbon uptake by peatlands, and CO2 release due to shallow water sedimentation of CaCO3. Ice core data of atmospheric CO2 between 8 ka BP and preindustrial climate can only be reproduced if CO2 outgassing due to shallow water sedimentation of CaCO3 is considered. In this case the model displays an increase of nearly 20 ppmv CO2 between 8 ka BP and present day. Model configurations that do not contain this forcing show a slight decrease in atmospheric CO2. We can therefore explain the late Holocene rise in CO2 by invoking natural forcing factors only, and anthropogenic forcing is not required to understand preindustrial CO2 dynamics.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Kleinen, Thomas
Brovkin, Victor
von Bloh, Werner
Archer, David
Munhoven, Guy ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) - Pétrologie, géochimie endogènes et pétrophysique
Language :
English
Title :
Holocene carbon cycle dynamics
Publication date :
2010
Journal title :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
Volume :
37
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique DFG - Deutsche Forschungsgemeinschaft
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Archer, D. (1996), A data-driven model of the global calcite lysocline, Global Biogeochem. Cycles, 10, 511-526.
Barker, S., and H. Elderfield (2002), Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2, Science, 297, 833-836, doi:10.1126/science.l072815. (Pubitemid 34839633)
Bigelow, N. H., et al. (2003), Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present, J. Geophys. Res., 108(D19), 8170, doi:10.1029/2002JD002558.
Broecker, W. S., E. Clark, D. C. McCorlde, T.-H. Peng, I. Hajdas, and G. Bonani (1999), Evidence for a reduction in the carbonate ion content of the deep sea during the course of the Holocene, Paleoceanography, 14, 744-752, doi:10.1029/1999PA900038. (Pubitemid 30168139)
Brovkin, V., J. Bendtsen, M. Claussen, A. Ganopolski, C. Kubatzki, V. Petoukhov, and A. Andreev (2002), Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model, Global Biogeochem. Cycles, 16(4), 1139, doi:10.1029/ 2001GB001662.
Brovkin, V., A. Ganopolski, D. Archer, and S. Rahmstorf (2007), Lowering of glacial atmospheric CO 2 in response to changes in oceanic circulation and marine biogeochemistry, Paleoceanography, 22, PA4202, doi:10.1029/2006PA001380.
Ciais, P., A. Tagliabue, M. Cuntz, L. Bopp, G. Hoffmann, M. Scholze, C. Prentice, J. Paris, and A. Lourantou (2009), 13C and 18O observations open a new window to understand the ice age carbon cycle, paper presented at the 8th International Carbon Dioxide Conference, Max-PlanckInst. fr Biogeochm., Jena, Germany.
Elsig, J., J. Schmitt, D. Leuenberger, R. Schneider, M. Eyer, M. Leuenberger, F. Joos, H. Fischer, and T. F. Stocker (2009), Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core, Nature, 461, 507-510, doi:10.1038/nature08393.
Frolking, S., and N. T. Roulet (2007), Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions, Global Change Biol, 13, 1079-1088, doi:10.1111/j.l365-2486.2007.01339.x. (Pubitemid 46672542)
Gajewski, K., A. Viau, M. Sawada, D. Atkinson, and S. Wilson (2001), Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years, Global Biogeochem. Cycles, 15, 297-310. (Pubitemid 32680054)
Indermhle, A., et al. (1999), Holocene carbon-cycle dynamics based on CO 2 trapped in ice at Taylor Dome, Antarctica, Nature, 398, 121-126, doi:10.1038/18158.
Jolly, D., et al. (1998), Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian peninsula at 0 and 6000 years, J. Biogeogr., 25, 1007-1027. (Pubitemid 29059963)
Joos, F., S. Gerber, I. C. Prentice, B. L. Otto-Bliesner, and P. J. Valdes (2004), Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum, Global Biogeochem. Cycles, 18, GB2002, doi:10.1029/2003GB002156.
Kaplan, J. O., I. C. Prentice, W. Knorr, and P. J. Valdes (2002), Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum, Geophys. Res. Lett, 29(22), 2074, doi:10.1029/2002GL015230.
Kaplan, J. O., K. M. Krumhardt, and N. Zimmermann (2009), The prehistoric and preindustrial deforestation of Europe, Quat. Sci. Rev., 28, 3016-3034, doi:10.1016/j.quascirev.2009.09.028.
Kleypas, J. A. (1997), Modeled estimates of global reef habitat and carbonate production since the Last Glacial Maximum, Paleoceanography, 12, 533-545.
Milliman, J. D. (1993), roduction and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state, Global Biogeochem. Cycles, 7, 927-957.
Monnin, E., et al. (2004), Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores, Earth Planet. Sci. Lett., 224, 45-54, doi:10.1016/j.epsl.2004.05.007. (Pubitemid 38958348)
Munhoven, G. (2002), Glacial-interglacial changes of continental weathering: Estimates of the related CO 2 and HCO 3 - flux variations and their uncertainties, Global Planet. Change, 33, 155-176, doi:10.1016/S09218181(02)00068-1.
New, M., M. Hulme, and P. Jones (2000), Representing twentieth-century space-time climate variability. Part II: Development of 1901 -96 monthly grids of terrestrial surface climate, J. Climate, 13(13), 2217-2238.
Petoukhov, V., A. Ganopolski, V. Brovkin, M. Claussen, A. Eliseev, C. Kubatzki, and S. Rahmstorf (2000), CLIMBER-2: A climate system model of intermediate complexity. Part I: Model description and performance for present climate, Clim. Dyn., 16, 1-17. (Pubitemid 30102534)
Pongratz, J., C. H. Reick, T. Raddatz, and M. Claussen (2009), Effects of anthropogenic land cover change on the carbon cycle of the last millennium, Global Biogeochem. Cycles, 23, GB4001, doi:10.1029/2009GB003488.
Ridgwell, A. J., A. J. Watson, M. A. Maslin, and J. O. Kaplan (2003), Implications of coral reef buildup for the controls on atmospheric CO 2 since the Last Glacial Maximum, Paleoceanography, 18(4), 1083, doi:10.1029/2003PA000893.
Ruddiman, W. F. (2003), The anthropogenic greenhouse era began thousands of years ago, Clim. Change, 61, 261-293, doi:10.1023/B:CLIM. 0000004577.17928.fa.
Scholze, M., J. O. Kaplan, W. Knorr, and M. Heimann (2003), Climate and interannual variability of the atmosphere-biosphere 13CO 2 flux, Geophys. Res. Lett, 30(2), 1097, doi:10.1029/2002GL015631.
Sitch, S., et al. (2003), Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biol, 9, 161-185. (Pubitemid 36294628)
Turunen, J., E. Tomppo, K. Tolonen, and A. Reinikainen (2002), Estimating carbon accumulation rates of undrained mires in Finland-Application to boreal and subarctic regions, Holocene, 12, 69-80, doi:10.1191/ 0959683602h1522rp.
Williams, J. W. (2003), Variations in tree cover in North America since the Last Glacial Maximum, Global and Planet. Change, 35, 1-23, doi:10.1016/S0921-8181(02)00088-7.
Zimov, N. S., S. A. Zimov, A. E. Zimova, G. M. Zimova, V. I. Chuprynin, and F. S. Chapin III (2009), Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: Role in the global carbon budget, Geophys. Res. Lett., 36, L02502, doi:10.1029/2008GL036332.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.