[en] This paper deals with the use of the extended Finite Element Method (X-FEM) for rapid dynamic problems. To solve the equations of motion, a common technique is the explicit direct integration with a Newmark scheme. Since this temporal scheme is only conditionally stable, the critical time step must be determined. It is generally induced by mesh constraints. The idea of the paper is to weaken constraints on mesh generation algorithms so that the critical time step is as large as possible. Using the X-FEM one allows a non-conformity between mesh and discontinuities such as cracks, holes or interfaces. In a first part, we present a summary about direct integration schemes and about the eXtended Finite Element Method. Then, we focus on the theoretical description of a ID X-FEM finite element and its generalization to 2D and 3D finite elements. Then, dynamic numerical simulations are shown. They concern structures under impact with holes or external boundaries not exactly matched by the mesh. Comparisons are made with numerical results coming from the ABAQUS software. It shows that developments are satisfactory. We conclude with some outlooks concerning this work. (c) 2007 Elsevier B.V. All rights reserved.
Disciplines :
Mathematics Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Rozycki, P.; Institut de Recherche en Ge´nie Civil et Me´canique, UMR CNRS 6183, Ecole Centrale de Nantes, 1 rue de la Noe¨ , BP 92101, F-44321 Nantes Cedex 3, France
Moes, N.; Institut de Recherche en Ge´nie Civil et Me´canique, UMR CNRS 6183, Ecole Centrale de Nantes, 1 rue de la Noe¨ , BP 92101, F-44321 Nantes Cedex 3, France
Béchet, Eric ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Conception géométrique assistée par ordinateur
Dubois, C.; Institut de Recherche en Ge´nie Civil et Me´canique, UMR CNRS 6183, Ecole Centrale de Nantes, 1 rue de la Noe¨ , BP 92101, F-44321 Nantes Cedex 3, France
Language :
English
Title :
X-FEM explicit dynamics for constant strain elements to alleviate mesh constraints on internal or external boundaries
Publication date :
2008
Journal title :
Computer Methods in Applied Mechanics and Engineering
Belytschko T., Holmes N., and Mullen R. Explicit integration-stability, solution properties, cost. ASME AMD 14 (1975) 1-21
Belytschko T., and Lin J.L. Explicit algorithms for the nonlinear dynamics of shells. Comput. Methods Appl. Mech. Engrg. 42 (1984) 225-251
Belytschko T., and Hughes T.J.R. Computational Methods for Transient Analysis (1986), North-Holland
Belytschko T., Chen H., Jingxiao X., and Goangseup Z. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer. Methods Engrg. 58 (2003) 1873-1905
Chan H.C., Cai C.W., and Cheung Y.K. Convergence studies of dynamic analysis by using the finite element method with lumped mass matrix. J. Sound Vib. 165 2 (1993) 193-207
Chessa J., and Belytschko T. Arbitrary discontinuities in space-time finite elements by level sets and X-FEM. Int. J. Numer. Methods Engrg. 61 (2004) 2595-2614
Daux C., Moës N., Dolbow J., Sukumar N., and Belytschko T. Arbitrary branched and intersecting cracks with the eXtended Finite Element Method. Int. J. Numer. Methods Engrg. 48 (2000) 1741-1760
Hughes T.J.R., Pister J.S., and Taylor R.L. Implicit-explicit finite elements in non-linear transient analysis. Comput. Methods Appl. Mech. Engrg. 17/18 (1979) 159-182
Melenk J.M., and Babuska I. The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Engrg. 139 (1996) 289-314
Menouillard T., Réthoré J., Combescure A., and Bung H. Efficient explicit time stepping for the eXtended Finite Element Method (X-FEM). Int. J. Numer. Methods Engrg. 69 (2006) 911-939
Moës N., Cloirec M., Cartraud P., and Remacle J.F. A computational approach to handle complex microstructure geometries. Comput. Methods Appl. Mech. Engrg. 192 (2003) 3163-3177
Newmark M.N. A method of computation for structural dynamics. ASCE Journal of the Engineering Mechanics Division 85 EM3 (1959)
Olovsson L., Simonsson K., and Unosson M. Selective mass scaling for explicit finite element analyses. Int. J. Numer. Methods Engrg. 63 10 (2005) 1436-1445
Réthoré J., Gravouil A., and Combescure A. An energy-conserving scheme for dynamic crack growth using the eXtended finite element method. Int. J. Numer. Methods Engrg. 63 5 (2005) 631-659
Réthoré J., Gravouil A., and Combescure A. A combined space-time extended finite element method. Int. J. Numer. Methods Engrg. 64 2 (2005) 260-284
Sukumar N., Chopp D.L., Moës N., and Belytschko T. Modeling holes and inclusions by level sets in the extended finite element method. Comput. Methods Appl. Mech. Engrg. 190 (2001) 6183-6200
Wu S.R. Lumped mass matrix in explicit finite element method for transient dynamics of elasticity. Comput. Methods Appl. Mech. Engrg. 195 44-47 (2006) 5983-5994