[en] We present an application of X-FEM to the fracture analysis of piezoelectric materials. These materials are increasingly used in actuators and sensors. Under in service loading, phenomena of crack initiation and propagation may occur due to high electromechanical field concentrations. In the past few years, the extended finite element method (X-FEM) has been applied mostly to model cracks in structural materials. The present paper focuses on the definition of new enrichment functions suitable for cracks in piezolectric structures. The approach is based on specific asymptotic crack tip solutions, derived for piezoelectric materials.
Disciplines :
Computer science Mechanical engineering
Author, co-author :
Béchet, Eric ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Conception géométrique assistée par ordinateur
Scherzer, Matthias; Institut f¨ur Mechanik und Fluiddynamik, TU Bergakademie Freiberg, Lampadiusstrasse 4, 09596 Freiberg, Germany
Kuna, Meinhard; Institut f¨ur Mechanik und Fluiddynamik, TU Bergakademie Freiberg, Lampadiusstrasse 4, 09596 Freiberg, Germany
Language :
English
Title :
Fracture of piezoelectric materials with the X-FEM
Béchet E., Minnebo H., Moës N., Burgardt B., " Convergence and conditioning issues with X-FEM in fracture mechanics", International Journal for Numerical Methods in Engineering, vol. 64, p. 1033-1056, 2005.
Béchet E., Scherzer M., Kuna M., " Application of the X-FEM to the fracture of piezoelectric materials", Submitted to International Journal for Numerical Methods in Engineering, 2008.
Belytschko T., Black T., " Elastic crack growth in finite elements with minimal remeshing", International Journal for Numerical Methods in Engineering, vol. 44, p. 601-620, 1999.
Elguedj T., Gravouil A., Combescure A., " Appropriate extended functions for XFEM simulation of plastic fracture mechanics", Computer Methods in Applied Mechanics and Engineering, vol. 195, no 7-8, p. 501-515, 2005.
Moës N., Dolbow J., Belytschko T., " A finite element method for crack growth without remeshing", International Journal for Numerical Methods in Engineering, vol. 46, p. 131-150, 1999.
Mußchelichwili N., Einige Grundaufgaben zur mathematischen Elastizitaetstheorie, VEB Fachbuchverlag (Leipzig), 1971.
Osher S., Sethian J., " Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations", Journal of Computational Physics, vol. 79, p. 12-49, 1988.
Scherzer M., Kuna M., " Combined analytical and numerical solution of 2D interface corner configurations between dissimilar piezoelectric materials", International Journal of Fracture, vol. 127, no 1, p. 61-99, 2004.
Sosa H., " Plane problems in piezoelectric media with defects", International Journal of Solids and Structures, vol. 28, no 4, p. 491-505, 1991.
Suo Z., Kuo C., Barnett D.,Willis J., " Fracture mechanics for piezoelectric ceramics", Journal of the Mechanics and Physics of Solids, vol. 40, no 4, p. 739-765, 1992.