[en] A methodology for treating non-planar three-dimensional cracks with geometries
that are independent of the mesh is summarized. The method is based on the extended finite element method, in which the crack discontinuity is introduced as a Heaviside step function via a partition of unity. In addition, branch functions are introduced for all elements containing the crack front. The crack geometry is described by two signed distance functions (level sets), which in turn can be defined by nodal values. Consequently, no explicit representation of the crack is needed. A Hamilton-Jacobi equation is used to update the level sets as the crack grows.
Numerical experiments show the robustness of the method in treating cracks with significant changes in topology. The method is readily extendable to inelastic fracture problems.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.