[en] The aim of the method proposed here is to show the possibility of generating adaptive surface meshes suitable for the finite element method, directly from an approximated boundary representation of an object created with CAD software. First, we describe the boundary representation, which is composed of a simple triangulation of the surface of the object. Then we will show how to obtain a conforming size-adapted mesh. The size adaptation is made considering geometrical approximation and with respect to an isotropic size map provided by an error estimator. The mesh can be used "as is" for a finite element computation (with shell elements), or can be used as a surface mesh to initiate a volume meshing algorithm (Delaunay or advancing front). The principle used to generate the mesh is based on the Delaunay method, which is associated with refinement algorithms, and smoothing. Finally, we will show that not using the parametric representation of the geometrical model allows us to override some of the limitations of conventional meshing software that is based on an exact representation of the geometry. (C) 2001 Published by Elsevier Science Ltd.
Disciplines :
Mechanical engineering
Author, co-author :
Béchet, Eric ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Conception géométrique assistée par ordinateur
Cuilliere, Jean-Christophe; LIRICS, Département de Génie Mécanique, Université du Québec à Trois-Rivières, Trois-Rivières, Que., Canada G9A 5H7
Trochu, François; Département de Génie Mécanique, Centre de Recherches Appliquées Sur les Polymères (CRASP), Ecole Polytechnique de Montréal, Montréal, Que., Canada H3C 3A7
Language :
English
Title :
Generation of a finite element MESH from stereolithography (STL) files
Cherfils C., Hermeline F. (1990) Diagonal swap procedures and characterizations of 2D-Delaunay triangulations. Math Mod and Num Anal 24(5):613-626.
Cuillière J.C. (1997) A direct method for the automatic discretization of 3D parametric curves. Comp Aided Design 29(9):639-647.
Cuillière J.C. (1998) An adaptive method for the automatic triangulation of 3D parametric surfaces. Comp Aided Design 30(2):139-149.
Delaunay B. (1934) Sur la sphère vide. Bul Acad Sci URSS, Class Sci Nat 793-800.
Dirichlet G.L. (1850) Über die Reduktion der positiven quadratischen Formen mit drei understimmten ganzen Zahlen. Z Angew Math Mech 40(3):209-227.
George P.L., Borouchaki H. Triangulation de Delaunay et maillages: Application aux éléments finis, Paris, Hermès. ISBN 2-86601-625-4; 1997.
Ito Y., Nakahashi K. (2000) Direct surface triangulation using stereolithography (STL) data. 38th AIAA Aerospace Sciences Meeting & Exhibit AIAA-2000-0924.
Pébay P.P., Frey P.J. (1998) A priori Delaunay-conformity. Proceedings of the 7th International Meshing Roundtable 321-333.
Rivara M.C., Inostroza P. (1997) Using longest-side bisection techniques for the automatic refinement of delaunay triangulations. Intl J for Num Meth in Eng 40:581-597.
Voronoï G. (1908) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Recherches sur les paralléloèdres primitifs. Journal Reine angew math 134.
Watson D.F. (1981) Computing the n-dimensional Delaunay Tesselation with application to Voronoï polytopes. Computer Journal 24(2):167-172.