[en] This paper is devoted to the imposition of Dirichlet-type conditions within the extended finite element method (X-FEM). This method allows one to easily model surfaces of discontinuity or domain boundaries on a mesh not necessarily conforming to these surfaces. Imposing Neumann boundary conditions on boundaries running through the elements is straightforward and does preserve the optimal rate of convergence of the background mesh (observed numerically in earlier papers). On the contrary, much less work has been devoted to Difichlet boundary conditions for the X-FEM (or the limiting case of stiff boundary conditions). In this paper, we introduce a strategy to impose Dirichlet boundary conditions while preserving the optimal rate of convergence. The key aspect is the construction of the correct Lagrange multiplier space on the boundary. As an application, we suggest to use this new approach to impose precisely zero pressure on the moving resin front in resin transfer moulding (RTM) process while avoiding remeshing. The case of inner conditions is also discussed as well as two important practical cases: material interfaces and phase-transformation front capturing. Copyright (c) 2006 John Wiley & Sons, Ltd.
Disciplines :
Mathematics Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Moes, Nicolas; GeM Institute, Ecole Centrale de Nantes, Université de Nantes, CNRS, 1 Rue de la Noe, 44321 Nantes, France
Béchet, Eric ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Conception géométrique assistée par ordinateur
Tourbier, Matthieu; GeM Institute, Ecole Centrale de Nantes, Université de Nantes, CNRS, 1 Rue de la Noe, 44321 Nantes, France
Language :
English
Title :
Imposing Dirichlet boundary conditions in the extended finite element method
Publication date :
2006
Journal title :
International Journal for Numerical Methods in Engineering
ISSN :
0029-5981
eISSN :
1097-0207
Publisher :
John Wiley & Sons, Inc, Chichester, United Kingdom
Babuška I. The finite element method with Lagrangian multipliers. Numerische Mathematik 1973; 20:179-192.
Barbosa H, Hughes T. Finite element method with Lagrange multipliers on the boundary. Circumventing the Babuska-Brezzi condition. Computer Methods in Applied Mechanics and Engineering 1991; 85(1):109-128.
Chapelle D, Bathe KJ. The inf-sup test. Computers and Structures 1993; 47:537-545.
Fernández-Méndez S, Huerta A. Imposing essential boundary conditions in mesh-free methods. Computer Methods in Applied Mechanics and Engineering 2004; 193:1257-1275.
Belytschko T, Lu Y, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering 1994; 37:229-256.
Babuška I, Melenk I. Partition of unity method. International Journal for Numerical Methods in Engineering 1997; 40(4):727-758.
Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 1999; 45(5):601-620.
Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 1999; 46:131-150.
Sukumar N, Chopp DL, Moës N, Belytschko T. Modeling holes and inclusions by level sets in the extended finite element method. Computer Methods in Applied Mechanics and Engineering 2001; 190:6183-6200.
Moës N, Cloirec M, Cartraud P, Remacle J-F. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering 2003; 192:3163-3177.
Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T. Arbitrary branched and intersecting cracks with the eXtended Finite Element Method. International Journal for Numerical Methods in Engineering 2000; 48:1741-1760.
Gravouil A, Moës N, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets. Part II: level set update. International Journal for Numerical Methods in Engineering 2002; 53:2569-2586.
Ji H, Chopp D, Dolbow JE. A hybrid extended finite element/level set method for modeling phase transformations. International Journal for Numerical Methods in Engineering 2002; 54:1209-1233.
Chessa J, Smolinski P, Belytschko T. The extended finite element method (X-FEM) for solidification problems. International Journal for Numerical Methods in Engineering 2002; 53:1959-1977.
Merle R, Dolbow J. Solving thermal and phase change problems with the extended finite element method. Computer Methods in Applied Mechanics and Engineering 2002; 28(5):339-350.
Ji H, Dolbow J. On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. International Journal for Numerical Methods in Engineering 2004; 61:2508-2535.
Nitsche J. Ber ein variationsprinzip zur lsung von dirichlet-problemen bei vervendung von teilrumen, die keinen randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminaren des Universitt Hamburg 1970; 36:9-15.
Hansbo A, Hansbo P. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Computer Methods in Applied Mechanics and Engineering 2002; 191:5537-5552.
Hansbo A, Hansbo P. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 2004; 193:3523-3540.
Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics. Springer: Berlin, 1991.
El-Abbasi N, Bathe K. Stability and patch test performance of contact discretizations and a new algorithm. Computers and Structures 2001; 79:1473-1486.
Dolbow J, Moës N, Belytschko T. An extended finite element method for modeling crack growth with frictional contact. Computer Methods in Applied Mechanics and Engineering 2001; 190:6825-6846.
Béchet E, Ruiz E, Trochu F, Cuillière J. Remeshing algorithms applied to mould filling simulations in resin transfer moulding. Journal of Reinforced Plastics and Composites 2003; 23:17-37.
Béchet E, Ruiz E, Trochu F, Cuillière J. Adaptive mesh generation for mould filling problems in resin transfer moulding. Composites 2003; 34(Part A):813-834.
Bruschke M, Advani S. A finite element/control volume approach to mould filling in anisotropic porous media. Polymer Composites 1990; 11:398-405.
Trochu F, Gauvin R, Gao D. Numerical analysis of the resin transfer moulding process by the finite element method. Advances in Polymer Technology 1993; 12:329-342.