methods: numerical; stars: fundamental parameters; stars: interiors; stars: oscillations
Abstract :
[en] Context. Seismic parameters such as the large Δ[SUB]0[/SUB] and small δ[SUB]02[/SUB] frequency separations are now being measured in a very large number of stars and begin to be used to test the physics of stellar models. <BR /> Aims: We estimate the influence of different observed quantities (oscillation frequencies, interferometry, etc.) and the impact of their accuracy in constraining stellar model parameters. <BR /> Methods: To relate the errors in observed quantities to the precision of the theoretical model parameters, we analyse the behaviour of the χ[SUP]2[/SUP] fitting function around its minimum using the singular value decomposition (SVD) formalism. A new indicator called "weighting" quantifies the relative importance of observational constraints on the determination of each physical parameter individually. These tools are applied to a grid of evolutionary sequences for solar-like stellar models with varying age and mass, and to a real case: HD 49933 - a typical case for which seismic observations are available from space using CoRoT. <BR /> Results: The mass ℳ is always the best determined parameter. The new indicator "weighting" allows us to rank the importance of the different constraints: the mean large separation Δ[SUB]0[/SUB], the radius R/R[SUB]&sun;[/SUB], the mean small separation δ[SUB]02[/SUB], the luminosity L/L[SUB]&sun;[/SUB], the effective temperature T[SUB]eff[/SUB]. If the metallicity and age parameters are known, for example in an open cluster, using either individual or mean frequency separations yields the same uncertainties for masses less than 1.1 M[SUB]&sun;[/SUB]. For HD 49933 the combination of ℳ and Y[SUB]0[/SUB]: ℳ[SUP]2[/SUP]Y[SUB]0[/SUB] is well determined because of their correlation. However, they are poorly constrained individually. The frequency difference δ[SUB]01[/SUB], if known with an error of about 0.3%, can determine the size of the convective core overshooting with about 3% accuracy. Appendices A and B are available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A>
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Ozel, Nesibe; Observatoire de Paris, LESIA, CNRS UMR 8109, 92195, Meudon, France
Dupret, Marc-Antoine ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
Baglin, A.; Observatoire de Paris, LESIA, CNRS UMR 8109, 92195, Meudon, France
Language :
English
Title :
Quantitative estimates of the constraints on solar-like models imposed by observables
Alexander, D. R., & Ferguson, J. W. 1994, ApJ, 437, 879
Appourchaux, T., Michel, E., Auvergne, M., et al. 2008, A&A, 488, 705
Baglin, A., & The CoRoT Team 1998, in New Eyes to See Inside the Sun and Stars, ed. F.-L. Deubner, J. Christensen-Dalsgaard, & D. Kurtz, IAU Symp., 185, 301
Bazot, M., Bouchy, F., Kjeldsen, H., et al. 2007, A&A, 470, 295
Bedding, T. R., Kjeldsen, H., Butler, R. P., et al. 2004, ApJ, 614, 380
Bessell, M. S., Castelli, F., & Plez, B. 1998, A&A, 333, 231
Böhm-Vitense, E. 1958, Zeitschrift fur Astrophysik, 46, 108
Borucki, W. J., Koch, D. G., Dunham, E. W., & Jenkins, J. M. 1997, in Planets Beyond the Solar System and the Next Generation of Space Missions, ed. D. Soderblom, ASP Conf. Ser., 119, 153
Bouchy, F., & Carrier, F. 2002, A&A, 390, 205
Brown, T. M., Christensen-Dalsgaard, J., Weibel-Mihalas, B., & Gilliland, R. L. 1994, ApJ, 427, 1013
Bruntt, H. 2009, ArXiv e-prints
Bruntt, H., De Cat, P., & Aerts, C. 2008, A&A, 478, 487
Canuto, V. M., & Mazzitelli, I. 1992, ApJ, 389, 724
Carrier, F., & Bourban, G. 2003, A&A, 406, L23
Christensen-Dalsgaard, J. 1984, in Liège International Astrophysical Colloquia, 25, Liège International Astrophysical Colloquia, 155 Christensen-Dalsgaard, J. 1988, in Advances in Helio-and Asteroseismology, ed. J. Christensen-Dalsgaard, & S. Frandsen, IAU Symp., 123, 295
Christensen-Dalsgaard, J., & Thompson, M. J. 1997, MNRAS, 284, 527
Creevey, O. L., Monteiro, M. J. P. F. G., Metcalfe, T. S., et al. 2007, ApJ, 659, 616
Fletcher, S. T., Chaplin, W. J., Elsworth, Y., Schou, J., & Buzasi, D. 2006, MNRAS, 371, 935
Gillon, M., & Magain, P. 2006, A&A, 448, 341
Gough, D. 1987, Nature, 326, 257
Gough, D. O., & Novotny, E. 1990, Sol. Phys., 128, 143
Goupil, et al. 2011, submitted
Grevesse, N., & Noels, A. 1993, in Perfectionnement de l'Association Vaudoise des Chercheurs en Physique, 205
Grundahl, F., Arentoft, T., Christensen-Dalsgaard, J., et al. 2008, J. Phys. Conf. Ser., 118, 012041
Hacking, P., Lonsdale, C., Gautier, T., et al. 1999, in Astrophysics with Infrared Surveys: A Prelude to SIRTF, ed. M. D. Bicay, R. M. Cutri, & B. F. Madore, ASP Conf. Ser., 177, 409
Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943
Kjeldsen, H., Bedding, T. R., Butler, R. P., et al. 2005, ApJ, 635, 1281
Kupka, F., & Bruntt, H. 2001, J. Astron. Data, 7, 8
North, J. R., Davis, J., Bedding, T. R., et al. 2007, MNRAS, 380, L80
Ozel, N., Dupret, M., & Baglin, A. 2010, Ap&SS, 143
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical recipes in FORTRAN. The art of scientific computing (Cambridge University Press), 2nd ed.
Scuflaire, R., Montalbán, J., Théado, S., et al. 2008, Ap&SS, 316, 149
Solano, E., Catala, C., Garrido, R., et al. 2005, AJ, 129, 547
Tassoul, M. 1980, ApJS, 43, 469
Ulrich, R. K. 1986, ApJ, 306, L37
van Leeuwen, F. 2007, A&A, 474, 653
Walker, G., Matthews, J., Kuschnig, R., et al. 2003, PASP, 115, 1023