[en] We have established a link between the global ac response and the local flux distribution of superconducting films by combining magnetic ac susceptibility, dc magnetization, and magneto-optical measurements. The investigated samples are three Nb films: a plain specimen, used as a reference sample, and other two films patterned with square arrays of antidots. At low temperatures and small ac amplitudes of the excitation field, the Meissner screening prevents penetration of flux into the sample. Above a certain ac drive threshold, flux avalanches are triggered during the first cycle of the ac excitation. The subsequent periodic removal, inversion, and rise of flux occurs essentially through the already-created dendrites, giving rise to an ac susceptibility signal weakly dependent on the applied field. The intradendrite flux oscillation is followed, at higher values of the excitation field, by a more drastic process consisting of creation of new dendrites and antidendrites. In this more invasive regime, the ac susceptibility shows a clear field dependence. At higher temperatures a smooth penetration occurs, and the flux profile is characteristic of a critical state. We have also shown that the regime dominated by vortex avalanches can be reliably identified by ac susceptibility measurements.
Disciplines :
Physics
Author, co-author :
Motta, M.; Universidade Federal de Sao Carlos (Brazil) > Departamento de Fısica
Colauto, F.; Universidade Federal de Sao Carlos (Brazil) > Departamento de Fısica
Zadorosny, R.; Universidade Federal de Sao Carlos (Brazil) > Departamento de Fısica
Johansen, T. H.; University of Oslo (Norway) > Department of Physics
Dinner, R. B.; University of Cambridge (United Kingdom) > Department of Materials Science
Blamire, M. G.; University of Cambridge (United Kingdom) > Department of Materials Science
Ataklti, G. W.; Katholieke Universiteit Leuven - KUL > Institute for Nanoscale Physics and Chemistry, Nanoscale Superconductivity and Magnetism Group
Moshchalkov, V. V.; Katholieke Universiteit Leuven - KUL > Institute for Nanoscale Physics and Chemistry, Nanoscale Superconductivity and Magnetism Group
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique de la matière condensée
Ortiz, W.; Universidade Federal de Sao Carlos (Brazil) > Departamento de Fısica
Language :
English
Title :
Visualizing the ac magnetic susceptibility of superconducting films via magneto-optical imaging
Publication date :
2011
Journal title :
Physical Review. B, Condensed Matter and Materials Physics
ISSN :
1098-0121
eISSN :
1550-235X
Publisher :
American Physical Society, Woodbury, United States - New York
C. P. Bean, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.8.250 8, 250 (1962).
C. P. Bean, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.36.31 36, 31 (1964).
Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.129.528 129, 528 (1963).
H. A. Ullmaier, Phys. Status Solidi PSSBBD 0370-1972 10.1002/pssb. 19660170220 17, 631 (1966).
J. R. Clem, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.326349 50, 3518 (1979). (Pubitemid 10469979)
M. V. Indenbom, Th. Schuster, H. Kuhn, H. Kronmüller, T. W. Li, and A. A. Menovsky, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.51.15484 51, 15484 (1995).
A. V. Silhanek, J. Gutierrez, R. B. G. Kramer, G. W. Ataklti, J. Van de Vondel, V. V. Moshchalkov, and A. Sanchez, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.83.024509 83, 024509 (2011).
D. V. Denisov, D. V. Shantsev, Y. M. Galperin, Eun-Mi Choi, Hyun-Sook Lee, Sung-Ik Lee, A. V. Bobyl, P. E. Goa, A. A. F. Olsen, and T. H. Johansen, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.97.077002 97, 077002 (2006).
S. Hebert, L. Van Look, L. Weckhuysen, and V. V. Moshchalkov, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.67.224510 67, 224510 (2003).
F. Colauto, E. M. Choi, J. Y. Lee, S. I. Lee, V. V. Yurchenko, T. H. Johansen, and W. A. Ortiz, Supercond. Sci. Technol. SUSTEF 0953-2048 10.1088/0953-2048/20/8/L02 20, L48 (2007). (Pubitemid 47189548)
F. Colauto, E. J. Patino, M. G. Blamire, and W. A. Ortiz, Supercond. Sci. Technol. SUSTEF 0953-2048 10.1088/0953-2048/21/4/045018 21, 045018 (2008). (Pubitemid 351763296)
A. V. Silhanek, S. Raedts, and V. V. Moshchalkov, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.70.144504 70, 144504 (2004). (Pubitemid 40052598)
M. Menghini, R. J. Wijngaarden, A. V. Silhanek, S. Raedts, and V. V. Moshchalkov, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.71.104506 71, 104506 (2005). (Pubitemid 40791936)
V. V. Yurchenko, A. J. Qviller, P. B. Mozhaev, J. E. Mozhaeva, J.B. Hansen, C. S. Jacobsen, I. M. Kotelyanskii, A. V. Pan, and T. H. Johansen, Physica C PHYCE6 0921-4534 10.1016/j.physc.2010.02.085 470, 799 (2010).
V. V. Schmidt, The Physics of Superconductors, edited by, P. Muller, and, A. V. Ustinov, (Springer, Berlin, 1997).
L. E. Helseth, R. W. Hansen, E. I. Il'yashenko, M. Baziljevich, and T. H. Johansen, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.64.174406 64, 174406 (2001).
The level of control of the zero-field condition was different for the 3 experimental setups employed: below 30 mOe at the MPMS, below 250 mOe at the MOI, and around 1 Oe at the PPMS.
P. Leiderer, J. Boneberg, P. Brüll, V. Bujok, and S. Herminghaus, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.71.2646 71, 2646 (1993).
C. A. Duran, P. L. Gammel, R. E. Miller, and D. J. Bishop, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.52.75 52, 75 (1995).
T. H. Johansen, M. Baziljevich, D. V. Shantsev, P. E. Goa, Y. M. Galperin, W. N. Kang, H. J. Kim, E. M. Choi, M.-S. Kim, and S. I. Lee, Europhys. Lett. EULEEJ 0295-5075 10.1209/epl/i2002-00146-1 59, 599 (2002).
A. V. Bobyl, D. V. Shantsev, T. H. Johansen, W. N. Kang, H. J. Kim, E. M. Choi, and S. I. Lee, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.1485304 80, 4588 (2002). (Pubitemid 34751415)
I. A. Rudnev, S. V. Antonenko, D. V. Shantsev, T. H. Johansen, and A. E. Primenko, Cryogenics CRYOAX 0011-2275 10.1016/S0011-2275(03)00157-7 43, 663 (2003).
S. C. Wimbush, B. Holzapfel, and C. Jooss, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1778816 96, 3589 (2004).
I. A. Rudnev, D. V. Shantsev, T. H. Johansen, and A. E. Primenko, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.1992673 87, 042502 (2005). (Pubitemid 41117968)
D. V. Denisov, A. L. Rakhmanov, D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.73.014512 73, 014512 (2006). (Pubitemid 43270430)
M. Baziljevich, A. V. Bobyl, D. V. Shantsev, E. Altshuler, T. H. Johansen, and S. I. Lee, Physica C PHYCE6 0921-4534 10.1016/S0921-4534(01)01226- 6 369, 93 (2002). (Pubitemid 34187475)
F. Colauto, E. Choi, J. Y. Lee, S. I. Lee, E. J. Patino, M. G. Blamire, T. H. Johansen, and W. A. Ortiz, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.3350681 96, 092512 (2010).
S. Kolesnik, V. Vlasko-Vlasov, U. Welp, G. W. Crabtree, T. Piotrowski, J. Wrobel, A. Klimov, P. Przystupski, T. Skoskiewicz, and B. Dabrowski, Physica C PHYCE6 0921-4534 10.1016/S0921-4534(00)00799-1 341-348, 1093 (2000). (Pubitemid 32091425)
V. Vlasko-Vlasov, U. Welp, V. Metlushko, and G. W. Crabtree, Physica C PHYCE6 0921-4534 10.1016/S0921-4534(00)00895-9 341-348, 1281 (2000). (Pubitemid 32091519)
E. H. Brandt and M. Indenbom, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.48.12893 48, 12893 (1993).
E. Zeldov, J. R. Clem, M. McElfresh, and M. Darwin, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.49.9802 49, 9802 (1994).
J. R. Clem and A. Sanchez, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.50.9355 50, 9355 (1994).
D.-X. Chen, C. Navau, N. Del-Valle, and A. Sanchez, Physica C PHYCE6 0921-4534 10.1016/j.physc.2009.10.012 470, 89 (2010).
V. V. Moshchalkov, M. Baert, V. V. Metlushko, E. Rosseel, M. J. Van Bael, K. Temst, Y. Bruynseraede, and R. Jonckheere, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.57.3615 57, 3615 (1998).
D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.61.9699 61, 9699 (2000).
E. H. Brandt, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.55.14513 55, 14513 (1997).
E. H. Brandt, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.58.6523 58, 6523 (1998).
Notice that the same scale is used for the 3 magnetic loops shown. Further amplification of the 5 K loop would evidence some amount of hysteresis, due to penetration at the borders.
R. B. Goldfarb and A. F. Clark, IEEE Trans. Magnetics, MAG-21, 332 (1985).
M. S. Welling, R. J. Wijngaarden, C. M. Aegerter, R. Wördenweber, and P. Lahl, Physica C PHYCE6 0921-4534 10.1016/j.physc.2003.11.026 404, 410 (2004).
Ch. Jooss, R. Warthmann, and H. Kronmüller, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.61.12433 61, 12433 (2000).
A. Polyanskii, R. L. S. Emergo, J. Z. Wu, T. Aytug, D. K. Christen, G. K. Perkins, and D. Larbalestier, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.72.174509 72, 174509 (2005). (Pubitemid 43017871)
M. Djupmyr, G. Cristiani, H.-U. Habermeier, and J. Albrecht, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.72.220507 72, 220507 (R) (2005). (Pubitemid 43024265)