Flux de CO2; Approche multicouche; Isotope stables
Abstract :
[fr] Le flux de dioxyde de carbone émanant du sol participe de manière prépondérante au cycle du carbone. On estime son amplitude à 68 ± 4 Pg C/an. En forêt tempérée, il représente approximativement 60-80% des émissions totales de CO2 de l’écosystème (respiration de l’écosystème). Compte tenu de l’ampleur de ce flux et des conséquences qu’aurait une quelconque modification de son amplitude sur le chargement en dioxyde de carbone de l’atmosphère, il est primordial d’améliorer la connaissance des mécanismes qui le régissent et de connaître précisément l’influence des variables du milieu (édaphiques et climatiques). Cet article vise à montrer l’intérêt d’effectuer des analyses multicouches des mécanismes à l’origine de ce flux (transport et production) plutôt que de restreindre les études à la surface du sol. De plus, cet article souligne le bénéfice apporté par l’outil isotopique pour améliorer la compréhension mécaniste de ce flux.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Goffin, Stéphanie ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Physique des bio-systèmes
Amundson R., Stern L., Baisden T. & Wang Y., 1998. The isotopic composition of soil and soil respired CO2. Geoderma, 82, 83-114.
Bathelier C. et al., 2008. Metabolic origin of the δ13C of respired CO2 in roots of Phaseolus vulgaris. New Phytol., 181, 387-399.
Blagodatskaya E., Yuyukina T., Blagodatsky S. & Kuzyakov Y., 2010. Turnover of soil organic matter and microbial biomass under C3-C4 vegetation change: consideration of 13C fractionation and preferential infstrate utilization. Soil Biol. Biochem., 43, 159-166.
Bowling D.R., Tans P. & Monson R., 2001. Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Global Change Biol., 7, 127-145.
Bowling D.R., Pataki D.E. & Randerson J.T., 2008. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol., 178, 24-40.
Brugnoli E. & Farquar G., 2000. Photosynthetic fractionation of carbon isotopes. In: Leegood R., Sharkey T. & von Caemmerer S. Photosynthesis: physiology and metabolism. Vol. 9. Dordrecht, The Netherlands: Kluwer, 399-434.
Bunnell F.L., Tait D. & Flanagan P.W., 1977. Microbial respiration and infstrate weight loss: a model of the influence of chemical composition. Soil Biol. Biochem., 9, 41-47.
Chemidlin Prévost-Bouré N. et al., 2009. Root exclusion through trenching does not affect the isotopic composition of soil CO2 efflux. Plant Soil, 319, 1-13.
Ciais P. et al., 1995. A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, 269(5227), 1098-1102.
Davidson E.A. & Trumbore S.E., 1995. Gas diffusivity and production of CO2 in deep soils of eastern Amazon. Tellus, 47b, 550-565.
Davidson E.A., Janssens I. & Luo Y., 2005. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biol., 11, 1-11.
Davidson E.A., Savage K., Trumbore S. & Borken W., 2006. Vertical partitioning of CO2 production within a temperate forest soil. Global Change Biol., 12, 944-956.
Denman et al., 2007. Couplings between changes in the climate system and biogeochemistry. In: Solomon S. et al., eds. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK; New York, NY, USA: Cambridge University Press.
DeSutter T.M., Sauer T.J., Parkin T.B. & Heitman J.L., 2008. A infsurface, closed-loop system for soil carbon dioxide and its application to the gradient efflux approach. Soil Biol. Biochem., 1, 126-134.
Duranceau M. et al., 1999. δ13C of CO2 respired in the dark in relation to δ13C of leaf carbohydrates in Phaseolus vulgaris L. under progressive drought. Plant Cell Environ., 22, 515-523.
Ekblad A. & Högberg P., 2001. Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia, 127, 305-308.
Ekblad A., Nyberg G. & Högberg P., 2002. 13C-discrimination during microbial respiration of added C3-, C4-, and 13C-labelled sugars to C3-forest soil. Oecologia, 131, 245-249.
Ekblad A., Boström B., Holm A. & Comstedt D., 2005. Forest soil respiration rate and 13C is regulated by recent above ground weather conditions. Oecologia, 143, 136-142.
Epron D. et al., 2004. Spatial and temporal variations of soil respiration in a Eucalyptus Plantation in Congo. Forest Ecol. Manage., 202, 149-160.
Fang C. & Moncrieff J.B., 1999. A model for soil CO2 production and transport. 1: Model development. Agric. Forest Meteorol., 95, 225-236.
Fang C. & Moncrieff J.B., 2001. The dependence of soil CO2 efflux on temperature. Soil Biol. Biochem., 33, 155-165.
Farquhar G., Ehleringer J. & Hubick K., 1989. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant. Phys. Plant Mol. Biol., 40, 503-537.
Frey S.D., 2007. Spatial distribution of soil organisms. In: Paul E.A. Soil microbiology, ecology, and biochemistry. Oxford, UK: Academic Press, Elsevier, 283-300.
Ghashghaie J., Tcherkez G., Cornic G. & Deleens E., 2001. Utilisation de la spectrométrie de masse isotopique en physiologie végétale. In: Barbier-Brygoo H., Joyard J., Morot-Gaudry J.F. & Gaymard F., eds. Génomique fonctionnelle chez les végétaux: du gène à la fonction. Paris: INRA-CNRS, 97-105.
Hirano T., 2005. Seasonal and diurnal variation in topsoil and infsoil respiration under snowpack in a temperate deciduous forest. Global Biogeochem. Cycles, 19, GB2011.
Janssens I. et al., 2003. Climatic influences on seasonal & spatial differences in soil CO2 efflux. In: Valentini R. Fluxes of carbon, water & energy of European forests. Vol. 163. Berlin; Heidelberg, Germany: Springer-Verlag, 235-252.
Jassal R.S. et al., 2004. A model of the production and transport of CO2 in soil: predicting soil CO2 concentration and CO2 efflux from a forest floor. Agric. Forest Meteorol., 124, 219-236.
Jassal R.S. et al., 2005. Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agric. Forest Meteorol., 130, 176-182.
Kirschbaum M., 1995. The temperature dependance of soil organic matter decomposition, and the effect of global warming on soil organic storage. Soil Biol. Biochem., 27, 753-760.
Kirschbaum M., 2006. The temperature dependance of organic matter decomposition-still a topic of debate. Soil Biol. Biochem., 38(9), 2510-2518.
Kodama N. et al., 2008. Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: from newly assimilated organic carbon respired carbon dioxyde. Oecologia, 156, 737-750.
Kuzyakov Y., 2006. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem., 38(3), 425-448.
Lewicki J.L. et al., 2003. Shallow soil CO2 flow along the San Andreas and Calaveras Faults, California. J. Geophys. Res. Solid Earth, 108, 2187.
Lin G. & Ehleringer J.R., 1997. Carbon isotopic fractionation does not occur during dark respiration in C3 and C4 plants. Plant Physiol., 114, 391-394.
Lloyd J. & Taylor J., 1994. On the temperature dependence of soil respiration. Funct. Ecol., 8, 315-323.
Luo Y. & Zhou X., 2006. Soil respiration and the environment. Amsterdam, The Netherlands; Boston, MA, USA: Elsevier Academic Press.
Marron N., Plain C., Longdoz B. & Epron D., 2008. Seasonal and daily time course of the 13C composition in soil CO2 efflux recorded with a tunable diode laser spectrophotometer (TDLS). Plant Soil, 318, 137-151.
Massman W.J. & Sommerfeld R.A., 1997. A model investigation of turbulence-driven pressure-pumping effects on the rate of diffusion of CO2, N2O, and CH4 through layered snowpacks. J. Geophys. Res., 102, 18,851-18,863.
Millington R. & Quirk J., 1961. Permeability of porous solids. Trans. Faraday Soc., 57, 1200-1207.
Moldrup P., Olesen T., Rolston D. & Yamaguchi T., 1997. Modeling diffusion and reaction in soils: VII. Predicting gas and ion diffusivity in undisturbed and sieved soils. Soil Sci., 162, 632-640.
Moldrup P. et al., 1999. Modeling diffusion and reaction in soils: VIII. Gas diffusion predicted from single-potential diffusivity or permeability measurements. Soil Sci., 164, 75-81.
Moldrup P. et al., 2000. Predicting the gas diffusion coefficient in undisturbed soil from soil water characteristics. Soil Sci. Soc. Am. J., 64, 94-100.
Ngao J. & Cotrufo M., 2011. Carbon isotope discrimination during litter decomposition can be explained by selective use of infstrate with differing δ13C. Biogeosci. Discuss., 8, 51-82.
Penman H.L., 1940. Gas and vapor movements in soil: the diffusion of vapors through porous solids. J. Agric. Sci., 30, 437-462.
Plain C. et al., 2009. Tracing of recently assimilated carbon in respiration at high temporal resolution in the field with a tuneable diode laser absorption spectrometer after in situ 13CO2 pulse labelling of 20-year-old beech trees. Tree Physiol., 29(11), 1433-1445.
Pumpanen J., Illvesniemi H. & Hari P., 2003. Process-based model for predicting soil carbon dioxide efflux and concentration. Soil Sci. Soc. Am. J., 67, 402-413.
Pumpanen J. et al., 2008. Respiration in boreal forest soil as determined from carbon dioxide concentration profile. Soil Physics, 72, 1187-1196.
Raich J. & Schlesinger W., 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44b, 81-99.
Roche C. & Bariac T., 1999. Interactions biosphèreatmosphère aux échelles locales et composition isotopique (13C, 18O) du CO2 atmosphérique: application à la forêt landaise. Thèse de doctorat: Université de Paris 06 (France).
Simunek J. & Suarez D., 1993. Modeling of carbon dioxide transport and production in soil: model development. Water Resour. Res., 29, 487-497.
Suleau M. et al., 2011. Respiration of three Belgian crops: partitioning of total ecosystem respiration in its heterotrophic, above- and below-ground autotrophic components. Agric. Forest Meteorol., 151(5), 633-643.
Tang J., Baldocchi D., Qi Y. & Xu L., 2003. Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric. Forest Meteorol., 118, 207-220.
Turcu V.E., Jones S.B. & Or D., 2005. Continuous soil carbon dioxide and oxygen measurements and estimation of gradient-based gaseous flux. Soil Sci. Soc. Am. J., 4, 1161-1169.
Vargas R. & Allen M.F., 2008. Environmental controls and the influence of vegetation type, fine roots and rhizomorphs on diel and seasonal variation in soil respiration. New Phytol., 179(2), 460-471.
Xu M. & Qi Y., 2001. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biol., 7, 667-677.
Yakir D. & Sternberg L., 2000. The use of stable isotopes to study ecosystem gaz exchange. Oecologia, 123, 297-311.
Zhou Z. & Shangguan Z., 2007. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China. Plant Soil, 291, 119-129.