extended finite element method; stiff boundary condition; Lagrange multiplier space
Abstract :
[en] This paper introduces a new algorithm to define a stable Lagrange multiplier space to impose stiff interface conditions within the context of the extended finite element method. In contrast to earlier approaches. we do not work with an interior penalty formulation as, e.g. for Nitsche techniques, but impose the constraints weakly in terms of Lagrange multipliers. Roughly speaking a stable and optimal discrete Lagrange multiplier space has to satisfy two criteria: a best approximation property and a uniform inf-sup condition. Owing to the fact that the interface does not match the edges of the mesh, the choice of a good discrete Lagrange Multiplier space is not trivial. Here we propose a new algorithm for the local construction of the Lagrange Multiplier space and show that a uniform inf-sup condition is satisfied. A counterexample is also presented, i.e. the inf-sup constant depends on the mesh-size and degenerates as it tends to zero. Numerical results in two-dimensional confirm the theoretical ones. Copyright (C) 2008 John Wiley & Sons, Ltd.
Disciplines :
Mathematics Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Béchet, Eric ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Conception géométrique assistée par ordinateur
Moes, Nicolas; Gem, Ecole Centrale de Nantes, Institut GEM, UMR CNRS 6183 1, rue de la No¨e, 44321 Nantes, France
Wohlmuth, Barbara; Institute of Applied Analysis and Numerical Simulations (IANS), Universit¨at Stuttgart, Pfaffenwaldring 57, 70529 Stuttgart, Germany
Language :
English
Title :
A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method
Publication date :
2009
Journal title :
International Journal for Numerical Methods in Engineering
ISSN :
0029-5981
eISSN :
1097-0207
Publisher :
John Wiley & Sons, Inc, Chichester, United Kingdom
Babuška I, Melenk I. Partition of unity method. International Journal for Numerical Methods in Engineering 1997; 40(4):727-758.
Melenk JM, Babuška I. The partition of unity finite element method: basic theory and applications. Computer Methods in Applied Mechanics and Engineering 1996; 39:289-314.
Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 1999; 45(5):601-620.
Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 1999; 46:131-150.
Sukumar N, Moës N, Belytschko T, Moran B. Extended finite element method for three-dimensional crack modelling. International Journal for Numerical Methods in Engineering 2000; 48(11):1549-1570.
Moës N, Gravouil A, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets. Part I: mechanical model. International Journal for Numerical Methods in Engineering 2002; 53:2549-2568.
Belytschko T, Moës N, Usui S, Parimi C. Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 2001; 50:993-1013.
Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T. Arbitrary branched and intersecting cracks with the extended finite element method. International Journal for Numerical Methods in Engineering 2000; 48:1741-1760.
Sukumar N, Chopp DL, Moës N, Belytschko T. Modeling holes and inclusions by level sets in the extended finite element method. Computer Methods in Applied Mechanics and Engineering 2001; 190:6183-6200.
Moës N, Cloirec M, Cartraud P, Remacle J-F. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering 2003; 192:3163-3177.
Nitsche J. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Vervendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminaren des Universität Hamburg 1971; 36:9-15.
Fernández-Méndez S, Huerta A. Imposing essential boundary conditions in mesh-free methods. Computer Methods in Applied Mechanics and Engineering 2004; 193:1257-1275.
Hansbo A, Hansbo P. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Computer Methods in Applied Mechanics and Engineering 2002; 191:5537-5552.
Wriggers P, Zavarise G. A formulation for frictionless contact problems using a weak formulation introduced by Nitsche. Computational Mechanics 2008; 41(3):407-420.
Mourad HM, Dolbow J, Harari I. A bubble-stabilized finite element method for Dirichlet constraints on embedded interfaces. International Journal for Numerical Methods in Engineering 2007; 69(4):772-793.
Dolbow JE, Franca LP. Residual-free bubbles for embedded Dirichlet problems. Computer Methods in Applied Mechanics and Engineering 2008; 197:3751-3759.
Stenberg R. On some techniques for approximating boundary conditions in the finite element method. Journal of Computational and Applied Mathematics 1995; 63:139-148.
Dolbow J, Moës N, Belytschko T. An extended finite element method for modeling crack growth with frictional contact. Computer Methods in Applied Mechanics and Engineering 2001; 190:6825-6846.
Ji H, Dolbow JE. On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. International Journal for Numerical Methods in Engineering 2004; 61:2508-2535.
Simone A. Partition of unity-based discontinuous elements for interface phenomena: computational issues. Communications in Numerical Methods in Engineering 2004; 20:465-478.
Moës N, Béchet E, Tourbier M. Imposing essential boundary conditions in the extended finite element method. International Journal for Numerical Methods in Engineering 2006; 67:1641-1669.
Chapelle D, Bathe KJ. The inf-sup test. Computers and Structures 1993; 47:537-545.
El-Abbasi N, Bathe KJ. Stability and patch test performance of contact discretizations and a new algorithm. Computers and Structures 2001; 79:1473-1486.
Géniaut S, Massin P, Moës N. A stable 3D contact formulation for cracks using x-fem. Revue Européenne de Mécanique Numérique 2007; 16:259-276.
Nistor I, Guiton MLE, Massin P, Moës N, Géniaut S. An X-FEM approach for large sliding contact along discontinuities. International Journal for Numerical Methods in Engineering 2008; accepted.
Kim TY, Dolbow J, Laursen T. A mortared finite element method for frictional contact on arbitrary interfaces. Computational Mechanics 2007; 39(3):223-235.
Haslinger J, Renard Y. A new fictitious domain approach inspired by the extended finite element method. SIAM Journal on Numerical Analysis 2008; under review.
Babuška I. The finite element method with Lagrangian multipliers. Numerische Mathematik 1973; 20:179-192.
Barbosa H, Hughes T. Finite element method with Lagrange multipliers on the boundary: circumventing the Babuska-Brezzi condition. Computer Methods in Applied Mechanics and Engineering 1991; 85(1):109-128.
Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics. Springer: Berlin, 1991.