multiscale methods; computational homogenization; finite element methods; magnetostatics; nonlinear materials
Abstract :
[en] The increasing use of composite materials in the technological industry (automotive, aerospace, ...) requires the development of effective models that account for the complexity of the microstructure of these materials and the nonlinear behaviour they can exhibit. In this paper we develop a multiscale computational homogenization method for modelling nonlinear multiscale materials in magnetostatics based on the finite element method. The method solves the macroscale problem by getting data from certain microscale problems around some points of interest. The missing nonlinear constitutive law at the macroscale level is derived through an upscaling from the microscale solutions. The downscaling step consists in imposing a source term and determining proper boundary conditions for microscale problems from the macroscale solution. For a two-dimensional geometry, results are validated by comparison with those obtained with a classical brute force finite element approach and a classical homogenization technique. The method provides a good overall macroscale response and more accurate local data around points of interest.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Niyonzima, Innocent ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
V Sabariego, Ruth ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Dular, Patrick ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Geuzaine, Christophe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Language :
English
Title :
Finite Element Computational Homogenization of Nonlinear Multiscale Materials in Magnetostatics
A. Bensoussan, J. L. Lions, and G. Papanicolau, Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications. : North-Holland, 1978.
I. Babuska, "Solution of interface solution by homogenization I," SIAM Journal on Mathematical Analysis, vol. 7, pp. 603-634, 1976.
Y. Efendiev, T. Hou, and V. Ginting, "Multiscale finite element methods for nonlinear problems and their applications," Commun. Math. Sci., vol. 2, no. 4, pp. 553-589, 2004.
W. E. and B. Engquist, "The heterogeneous multiscale methods," Commun. Math. Sci., vol. 1, pp. 87-132, 2003.
P.-B. Ming, and P.-W. Zhang, "Analysis of the heterogeneous multiscale method for elliptic homogenization problems," J. Amer. Math. Soc., vol. 18, no. 1, pp. 121-156, 2004.
I. Ozdemir, W. A. Brekelmans, and M. G. D. Geers, "Computational homogenization for heat conduction in heterogeneous solids," Int. J. Numer. Methods Eng., vol. 73, pp. 185-204, 2008.
O. Bottauscio, M. Chiampi, and A. Manzin, "Multiscale analysis of higly heterogeneous nonlinear media," J. Appl. Phys., vol. 103, p. 07D911/1-3, 2008.
J. Gyselinck and P. Dular, "A time-domain homogenization technique for laminated iron cores in 3-D finite element models," IEEE Trans. Magn., vol. 40, no. 2, pp. 856-859, 2004.
J. Gyselinck, R. V. Sabariego, and P. Dular, "A nonlinear time-domain homogenization technique for laminated iron cores in three-dimensional finite element models," IEEE Trans. Magn., vol. 42, no. 4, pp. 763-766, 2006.
A. Bossavit, Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements. New York: Academic Press, 1998.
C. Miehe, "Numerical computational of algorithmic (consistent) tangent moduli in large-strain computational inelasticity," Comput. Methods Appl. Mech. Eng., vol. 134, pp. 223-240, 1996.