[en] Valve dysfunction is a common cardiovascular pathology. Despite significant clinical research, there is little formal study of how valve dysfunction affects overall circulatory dynamics. Validated models would offer the ability to better understand these dynamics and thus optimize diagnosis, as well as surgical and other interventions. A cardiovascular and circulatory system (CVS) model has already been validated in silico, and in several animal model studies. It accounts for valve dynamics using Heaviside functions to simulate a physiologically accurate “open on pressure, close on flow” law. However, it does not consider real-time valve opening dynamics and therefore does not fully capture valve dysfunction, particularly where the dysfunction involves partial closure. This research describes an updated version of this previous closed-loop CVS model that includes the progressive opening of the mitral valve, and is defined over the full cardiac cycle. Simulations of the cardiovascular system with healthy mitral valve are performed, and, the global hemodynamic behaviour is studied compared with previously validated results. The error between resulting pressure-volume (PV) loops of already validated CVS model and the new CVS model that includes the progressive opening of the mitral valve is assessed and remains within typical measurement error and variability. Simulations of ischemic mitral insufficiency are also performed. Pressure-Volume loops, transmitral flow evolution and mitral valve aperture area evolution follow reported measurements in shape, amplitude and trends. The resulting cardiovascular system model including mitral valve dynamics provides a foundation for clinical validation and the study of valvular dysfunction in vivo. The overall models and results could readily be generalised to other cardiac valves.
Disciplines :
Cardiovascular & respiratory systems Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Paeme, Sabine ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Moorhead, Katherine
Chase, J. Geoffrey
LAMBERMONT, Bernard ; Centre Hospitalier Universitaire de Liège - CHU > Frais communs médecine
Kolh, Philippe ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, humaines et path.
D'Orio, Vincenzo ; Université de Liège - ULiège > Département des sciences cliniques > Médecine d'urgence - bioch. et phys. hum. normales et path.
Pierard, Luc ; Université de Liège - ULiège > Département des sciences cliniques > Cardiologie - Pathologie spéciale et réhabilitation
Moonen, Marie ; Université de Liège - ULiège > Département des sciences cliniques > Cardiologie - Pathologie spéciale et réhabilitation
Lancellotti, Patrizio ; Université de Liège - ULiège > Département des sciences cliniques > Imagerie cardiaque fonctionnelle par échographie
Dauby, Pierre ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Desaive, Thomas ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Language :
English
Title :
Mathematical multi-scale model of the cardiovascular system including mitral valve dynamics. Application to ischemic mitral insufficiency
Publication date :
24 September 2011
Journal title :
BioMedical Engineering OnLine
eISSN :
1475-925X
Publisher :
BioMed Central, London, United Kingdom
Volume :
10
Issue :
1
Pages :
86
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Raff U, Culclasure TF, Clark C, Overturf L, Groves BM. Computerized left ventricular pressure-volume relationships (pv-loops) using disposable angiographic tip transducer pigtail catheters. Int J Card Imaging 2000, 16:13-21. 10.1023/A:1006349123217, 10832620.
Etiology, clinical features, and evaluation of chronic mitral regurgitation. , http://www.uptodate.com/patients/content/topic.do?topicKey=~JTi881I452juyjT
Lancellotti P. L'insuffisance mutrale dynamique. Rôle de l'échocardiographie d'effort. PhD thesis 2004-2005. University of Liège, Faculté de Médecine, Service de Cardiologie.
Tcheng JE, Jackman JD, Nelson CL, Gardner LH, Smith LR, Rankin JS, Califf RM, Stack RS. Outcome of Patients Sustaining Acute Ischemic Mitral Regurgitation during Myocardial-Infarction. Ann Intern Med 1992, 117:18-24.
Trichon BH, Felker GM, Shaw LK, Cabell CH, O'Connor CM. Relation of frequency and severity of mitral regurgitation to survival among patients with left ventricular systolic dysfunction and heart failure. Am J Cardiol 2003, 91:538-543. 10.1016/S0002-9149(02)03301-5, 12615256.
Lancellotti P, Lebrun F, Pierard LA. Determinants of exercise-induced changes in mitral regurgitation in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol 2003, 42:1921-1928. 10.1016/j.jacc.2003.04.002, 14662253.
Lancellotti P, Troisfontaines P, Toussaint AC, Pierard LA. Prognostic importance of exercise-induced changes in mitral regurgitation in patients with chronic ischemic left ventricular dysfunction. Circulation 2003, 108:1713-1717. 10.1161/01.CIR.0000087599.49332.05, 12975251.
Burkhoff D, Alexander J, Schipke J. Assessment of Windkessel as a Model of Aortic Input Impedance. Am J Physiol 1988, 255:H742-H753.
Shim EB, Jun HM, Leem CH, Matusuoka S, Noma A. A new integrated method for analyzing heart mechanics using a cell-hemodynamics-autonomic nerve control coupled model of the cardiovascular system. Prog Biophys Mol Biol 2008, 96:44-59. 10.1016/j.pbiomolbio.2007.07.015, 17904205.
Kerckhoffs RCP, Neal ML, Gu Q, Bassingthwaighte JB, Omens JH, McCulloch AD. Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng 2007, 35:1-18. 2872168, 17111210.
Hunter PJ, Nielsen PMF, Smaill BH, Legrice IJ, Hunter IW. An Anatomical Heart Model with Applications to Myocardial Activation and Ventricular Mechanics. Crit Rev Biomed Eng 1992, 20:403-426.
Waite L, Fine J. Applied Biofluid Mechanics 2007, The McGraw-Hill Companies, Inc.
Smith BW, Chase JG, Nokes RI, Shaw GM, Wake G. Minimal haemodynamic system model including ventricular interaction and valve dynamics. Med Eng Phys 2004, 26:131-139. 10.1016/j.medengphy.2003.10.001, 15036180.
Hann CE, Chase JG, Shaw GM. Efficient implementation of non-linear valve law and ventricular interaction dynamics in the minimal cardiac model. Comput Methods Programs Biomed 2005, 80:65-74. 10.1016/j.cmpb.2005.06.003, 16039750.
Smith BW, Chase JG, Shaw GM, Nokes RI. Experimentally verified minimal cardiovascular system model for rapid diagnostic assistance. Control Engineering Practice 2005, 13:1183-1193.
Olansen JB, Clark JW, Khoury D, Ghorbel F, Bidani A. A closed-loop model of the canine cardiovascular system that includes ventricular interaction. Comput Biomed Res 2000, 33:260-295. 10.1006/cbmr.2000.1543, 10944405.
Desaive T, Lambermont B, Ghuysen A, Kolh P, Dauby PC, Starfinger C, Hann CE, Chase JG, Shaw GM. Cardiovascular Modelling and Identification in Septic Shock - Experimental validation. Proceedings of the 17th IFAC World Congress July 6-11, 2008, Seoul, Korea 2008, 2976-2979.
Desaive T, Ghuysen A, Lambermont B, Kolh P, Dauby PC, Starfinger C, Hann CE, Chase J, Shaw GM. Study of ventricular interaction during pulmonary embolism using clinical identification in a minimum cardiovascular system model. Conf Proc IEEE Eng Med Biol Soc 2007, 2007:2976-2979.
Starfinger C. Patient-Specific Modelling of the Cardiovascular System for Diagnosis and Therapy Assistance in Critical Care. PhD thesis 2008, University of Canterbury.
Starfinger C, Chase JG, Hann CE, Shaw GM, Lambermont B, Ghuysen A, Kolh P, Dauby PC, Desaive T. Model-based identification and diagnosis of a porcine model of induced endotoxic shock with hemofiltration. Math Biosci 2008, 216:132-139. 10.1016/j.mbs.2008.08.014, 18817788.
Starfinger C, Hann CE, Chase JG, Desaive T, Ghuysen A, Shaw GM. Model-based cardiac diagnosis of pulmonary embolism. Comput Methods Programs Biomed 2007, 87:46-60. 10.1016/j.cmpb.2007.03.010, 17478006.
Segers P, Stergiopulos N, Westerhof N, Wouters P, Kolh P, Verdonck P. Systemic and pulmonary hemodynamics assessed with a lumped-parameter heart-arterial interaction model. Journal of Engineering Mathematics 2003, 47:185-199.
Conlon MJ, Russell DL, Mussivand T. Development of a mathematical model of the human circulatory system. Ann Biomed Eng 2006, 34:1400-1413. 10.1007/s10439-006-9164-y, 16900394.
Kozarski M, Ferrari G, Zielinski K, Gorczynska K, Palko KJ, Tokarz A, Darowski M. A new hybrid electro-numerical model of the left ventricle. Comput Biol Med 2008, 38:979-989. 10.1016/j.compbiomed.2008.07.001, 18762290.
Zacek M, Krause E. Numerical simulation of the blood flow in the human cardiovascular system. J Biomech 1996, 29:13-20. 10.1016/0021-9290(95)00027-5, 8839013.
Waite L, Schulz S, Szabo G, Vahl CF. A lumped parameter model of left ventricular filling-pressure waveforms. Biomed Sci Instrum 2000, 36:75-80.
Franck CF, Waite L. Mathematical model of a variable aperture mitral valve. Biomed Sci Instrum 2002, 38:327-331.
Szabó G, Soans D, Graf A, J Beller C, Waite L, Hagl S. A new computer model of mitral valve hemodynamics during ventricular filling. Eur J Cardiothorac Surg 2004, 26:239-247. 10.1016/j.ejcts.2004.03.018, 15296878.
De Hart J, Peters GW, Schreurs PJ, Baaijens FP. A two-dimensional fluid-structure interaction model of the aortic valve [correction of value]. J Biomech 2000, 33:1079-1088. 10.1016/S0021-9290(00)00068-3, 10854880.
De Hart J, Peters GW, Schreurs PJ, Baaijens FP. A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J Biomech 2003, 36:103-112. 10.1016/S0021-9290(02)00244-0, 12485644.
van Loon R, Anderson PD, van de Vosse FN. A fluid-structure interaction method with solid-rigid contact for heart valve dynamics. Journal of Computational Physics 2006, 217:806-823.
Starfinger C, Chase JG, Hann CE, Shaw GM, Lambert P, Smith BW, Sloth E, Larsson A, Andreassen S, Rees S. Model-based identification of PEEP titrations during different volemic levels. Comput Methods Programs Biomed 2008, 91:135-144. 10.1016/j.cmpb.2008.03.005, 18466998.
Starfinger C, Chase JG, Hann CE, Shaw GM, Lambert P, Smith BW, Sloth E, Larsson A, Andreassen S, Rees S. Prediction of hemodynamic changes towards PEEP titrations at different volemic levels using a minimal cardiovascular model. Comput Methods Programs Biomed 2008, 91:128-134. 10.1016/j.cmpb.2008.03.004, 18472180.
Santamore WP, Burkhoff D. Hemodynamic consequences of ventricular interaction as assessed by model analysis. Am J Physiol 1991, 260:H146-157.
Smith BW, Chase JG, Shaw GM, Nokes RI. Simulating transient ventricular interaction using a minimal cardiovascular system model. Physiol Meas 2006, 27:165-179. 10.1088/0967-3334/27/2/007, 16400203.
Dutron S. Modélisation de l'interaction ventriculaire. Master thesis 2005, University of Liège.
Saito S, Araki Y, Usui A, Akita T, Oshima H, Yokote J, Ueda Y. Mitral valve motion assessed by high-speed video camera in isolated swine heart. Eur J Cardiothorac Surg 2006, 30:584-591. 10.1016/j.ejcts.2006.07.021, 16949829.
Agricola E, Oppizzi M, Pisani M, Meris A, Maisano F, Margonato A. Ischemic mitral regurgitation: mechanisms and echocardiographic classification. Eur J Echocardiogr 2008, 9:207-221.
Courtois M, Kovacs SJ, Ludbrook PA. Transmitral pressure-flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. Circulation 1988, 78:661-671. 10.1161/01.CIR.78.3.661, 3409502.
Flewitt JA, Hobson TN, Wang J, Johnston CR, Shrive NG, Belenkie I, Parker KH, Tyberg JV. Wave intensity analysis of left ventricular filling: application of windkessel theory. Am J Physiol Heart Circ Physiol 2007, 292:H2817-2823. 10.1152/ajpheart.00936.2006, 17277025.
Hashim SW, Rousou AJ, Geirsson A, Ragnarsson S. Solving the puzzle of chronic ischemic mitral regurgitation. Yale J Biol Med 2008, 81:167-173. 2605311, 19099047.
Shioura KM, Geenen DL, Goldspink PH. Assessment of cardiac function with the pressure-volume conductance system following myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2007, 293:H2870-2877. 10.1152/ajpheart.00585.2007, 17720769.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.