[en] This paper addresses the inversion of probabilistic models for the dynamical behaviour of structures using experimental data sets of measured frequency-domain transfer functions. The inversion is formulated as the minimization, with respect to the unknown parameters to be identified, of an objective function that measures a distance between the data and the model. Two such distances are proposed, based on either the loglikelihood function, or the relative entropy. As a comprehensive example, a probabilistic model for the dynamical behaviour of a slender beam is inverted using simulated data. The methodology is then applied to a civil and environmental engineering case history involving the identification of a probabilistic model for ground-borne vibrations from real experimental data.
Disciplines :
Mechanical engineering
Author, co-author :
Arnst, Maarten ; Ecole Centrale Paris > Laboratoire des Sols, Structures et Matériaux
Clouteau, Didier; Ecole Centrale Paris > Laboratoire des Sols, Structures et Matériaux
Bonnet, Marc; Ecole Polytechnique (France) > Laboratoire de Mécanique des Solides
Language :
English
Title :
Inversion of probabilistic structural models using measured transfer functions
Publication date :
January 2008
Journal title :
Computer Methods in Applied Mechanics and Engineering
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Friswell M.J., and Mottershead J.E. Finite Element Model Updating in Structural Dynamics (1995), Kluwer, Dordrecht, The Netherlands
Ljung L. System Identification: Theory for the User (1987), Prentice-Hall PTR
Pintelon R., and Schoukens J. System Identification: A Frequency Domain Approach (2001), Wiley-IEEE Press
Savin E. Midfrequency vibrations of a complex structure: experiments and comparison with numerical simulations. AIAA J. 40 (2002) 1876-1884
Ibrahim R.A. Structural dynamics with parameter uncertainties. ASME Appl. Mech. Rev. 40 (1987) 309-328
Manohar C.S., and Ibrahim R.A. Progress in structural dynamics with stochastic parameter variations 1987-1998. ASME Appl. Mech. Rev. 52 (1999) 177-197
Schueller G.I., Bergman L.A., Bucher C.G., Dasgupta G., Deotdatis G., Ghanem R.G., Grigoriu M., Hoshiya M., Johnson E.A., Naess N.A., Pradlwarter H.J., Shinozuka M., Sobszyck K., Spanos P.D., Spencer B.F., Sutoh A., Takada T., Wedig W.V., Wojtkiewicz S.F., Yoshida I., Zeldin B.A., and Zhang R. A state-of-the-art report on computational stochastic mechanics. Probab. Engrg. Mech. 12 (1997) 197-321
Ghanem R., and Spanos P. Stochastic Finite Elements: A Spectral Approach (1991), Springer
Lin Y.K., and Cai G.Q. Probabilistic Structural Dynamics (1995), McGraw-Hill
Soize C. A non-parametric model of random uncertainties for reduced matrix models in structural dynamics. Probab. Engrg. Mech. 15 (2000) 277-294
Soize C. Maximum entropy approach for modeling random uncertainties in transient elastodynamics. J. Acoust. Soc. Am. 109 (2001) 1979-1996
Desceliers C., Ghanem R., and Soize C. Maximum likelihood estimation of stochastic chaos representations from experimental data. Int. J. Numer. Methods Engrg. 66 (2006) 978-1001
Soize C., and Ghanem R. Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26 (2004) 395-410
Wiener N. The homogeneous chaos. Am. J. Math. 60 (1938) 897-936
Soize C. Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators. Comput. Methods Appl. Mech. Engrg. 195 (2006) 26-64
Shannon C. A mathematical theory of communications. Bell Syst. Tech. J. 27 (1948) 379-423
Jaynes E.T. Information theory and statistical mechanics. Phys. Rev. 106 (1957) 620-630
Jaynes E.T. Probability Theory: The Logic of Science (2003), Cambridge University Press
E. Balmès, Frequency domain identification of structural dynamics using the pole/residue parametrization, in: International Modal Analysis Conference, Dearborn, USA, 1996.
Casella G., and Berger R.L. Statistical Inference (2001), Duxbury Press
Kullback S. Information Theory and Statistics (1968), Dover Publications
Lehmann E.L., and Casella G. Theory of Point Estimation (1998), Springer
Cramér H. Mathematical Methods of Statistics (1946), Princeton University Press
Stuart A., Ord K., and Arnold S. Kendall's Advanced Theory of Statistics, Volume 2A: Classical Inference and the Linear Model (1999), Arnold Hodder
O'Hagan A., and Forster J. Kendall's Advanced Theory of Statistics, Volume 2B: Bayesian Inference (2004), Arnold Hodder
Soize C. Random matrix theory for modeling uncertainties in computational mechanics. Comput. Methods Appl. Mech. Engrg. 194 (2005) 1333-1366
E. Capiez-Lernout, Dynamique des structures tournantes à symétrie cyclique en présence d'incertitudes aléatoires. Application au désaccordage des roues aubagées, Ph.D. thesis, Université de Marne-La-Vallée, France, 2004.
Chen C., Duhamel D., and Soize C. Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: case of composite sandwich panels. J. Sound Vib. 294 (2006) 64-81
Desceliers C., Soize C., and Ghanem R.G. Identification of chaos representations of elastic properties of random media using experimental vibration tests. Computation. Mech. 39 (2007) 831-838
Ghanem R.G., and Doostan A. On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data. J. Comput. Phys. 217 (2006) 63-81
L. Ljung, Some results on identifying linear systems using frequency domain data, in: Proceedings of the 32nd IEEE Conference on Decision and Control, San Antonio, USA, 1993, pp. 3534-3538.
Beck J.L., and Katafygiotis L.S. Updating models and their uncertainties I: Bayesian statistical framework. J. Engrg. Mech. 124 (1998) 455-461
Yuen K.-V., and Katafygiotis L.S. Bayesian modal updating using complete input and incomplete response noisy measurements. J. Engrg. Mech. 128 (2002) 340-350
Goodwin G.C., Gevers M., and Ninness B. Quantifying the error in estimated transfer functions with application to model order selection. IEEE Trans. Automat. Contr. 37 (1992) 913-928
Reinelt W., Garulli A., and Ljung L. Comparing different approaches to model error modelling in robust identification. Automatica 38 (2002) 787-803
Soize C. A comprehensive overview of non-parametric probabilistic approach of random uncertainties for predictive models in structural dynamics. J. Sound Vib. 288 (2005) 623-652
Chernov L.A. Wave Propagation in a Random Medium (1968), Dover Publications
Kravtsov Y.A., Kasilar A., Shapiro S.A., Buske S., and Müller T. Estimating statistical parameters of an elastic random medium from traveltime fluctuations of refracted waves. Waves Random Complex Media 15 (2005) 43-60
Iooss B. Seismic reflection traveltimes in two-dimensional statistically anisotropic random media. Geophys. J. Int. 135 (1998) 999-1010
Kullback S., and Leibler R.A. On information and sufficiency. Ann. Math. Statist. 22 (1951) 79-86
Kapur J.N., and Kesavan H.K. Entropy Optimisation Principles with Applications (1992), Academic Press, San Diego
Ohayon R., and Soize C. Structural Acoustics and Vibration (1998), Academic Press
Soize C. Reduced models in the medium frequency range for general dissipative structural-dynamics systems. Eur. J. Mech. A: Solids 17 (1998) 657-685
Sarkar A., and Ghanem R. Mid-frequency structural dynamics with parameter uncertainty. Comput. Methods Appl. Mech. Engrg. 191 (2002) 5499-5513
Fisher R.A. On the mathematical foundations of theoretical statistics. Philos. Trans. Roy. Soc. A 222 (1922) 309-368
Csiszár I. Information type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hung. 2 (1967) 299-318
Scott D.W. Multivariate Density Estimation: Theory, Practice, and Visualization (1992), Wiley-Interscience
Besag J. Spatial interaction and the statistical analysis of lattice systems. J. Roy. Statist. Soc. B 36 (1974) 192-236
Besag J. Statistical analysis of non-lattice data. Statistician 24 (1975) 179-195
Nott D.J., and Ryden T. Pairwise likelihood methods for inference in image models. Biometrika 86 (1999) 661-676
Cox D.R., and Reid N. A note on pseudolikelihood constructed from marginal densities. Biometrika 91 (2004) 729-737
Lindsay B.G. Composite likelihood methods. In: Prabhu N.U. (Ed). Statistical Inference from Stochastic Processes (1998), American Mathematical Society 221-239
Parzen E. On estimation of probability density function and mode. Ann. Math. Statist. 33 (1962) 1065-1076
Rosenblatt M. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956) 832-837
Robert C.P., and Casella G. Monte Carlo Statistical Methods (2005), Springer
Kirkpatrick S., Gelatt C.D., and Vecchi M.P. Optimization by simulated annealing. Science 220 (1983) 671-680
Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., and Teller E. Equations of state calculations by fast computing machines. J. Chem. Phys. 21 (1953) 1087-1092
Goldberg D.E. Genetic Algorithms in Search, Optimization and Machine Learning (1989), Addison-Wesley Professional
Fogel D.B. Evolutionary Computation: Towards a New Philosophy of Machine Intelligence (1995), IEEE Computer Society Press
Clouteau D., Arnst M., Al Hussaini T.M., and Degrande G. Free field vibrations due to dynamic loadings on a tunnel embedded in a stratified medium. J. Sound Vib. 283 (2005) 173-199
Clouteau D., and Aubry D. A subdomain approach to dynamic soil-structure interaction. In: Hall W.S., and Oliveto G. (Eds). Boundary Element Methods for Soil-Structure Interaction (2003), Springer 61-125
Arnst M., Clouteau D., Chebli H., Othman R., and Degrande G. A nonparametric probabilistic model for ground-borne vibrations in buildings. Probab. Engrg. Mech. 21 (2006) 18-34
R. Cottereau, Probabilistic models of impedance matrices, Application to dynamic soil-structure interaction, Ph.D. thesis, École Centrale Paris, France, 2007.
Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation (2005), SIAM
Adhikari S. Random matrix eigenvalue problems in structural dynamics. Int. J. Numer. Methods Engrg. 69 (2007) 562-591
Rahman S. A solution of the random eigenvalue problem by a dimensional decomposition method. Int. J. Numer. Methods Engrg. 67 (2006) 1318-1340
Géradin M., and Rixen D. Mechanical Vibrations: Theory and Applications to Structural Dynamics (1992), John Wiley & Sons
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.