[en] A genome-wide scan was performed in Large White and French Landrace pig populations in order to identify QTL affecting reproduction and production traits. The experiment was based on a granddaughter design, including five Large White and three French Landrace half-sib families identified in the French porcine national database. A total of 239 animals (166 sons and 73 daughters of the eight male founders) distributed in eight families were genotyped for 144 microsatellite markers. The design included 51 262 animals recorded for production traits, and 53 205 litter size records were considered. Three production and three reproduction traits were analysed: average backfat thickness (US_M) and live weight (LWGT) at the end of the on-farm test, age of candidates adjusted at 100 kg live weight, total number of piglets born per litter, and numbers of stillborn (STILLp) and born alive (LIVp) piglets per litter. Ten QTL with medium to large effects were detected at a chromosome-wide significance level of 5% affecting traits US_M (on SSC2, SSC3 and SSC17), LWGT (on SSC4), STILLp (on SSC6, SSC11 and SSC14) and LIVp (on SSC7, SSC16 and SSC18). The number of heterozygous male founders varied from 1 to 3 depending on the QTL.
Disciplines :
Genetics & genetic processes Animal production & animal husbandry
Author, co-author :
Tribout, Thierry
Iannuccelli, Nathalie
Druet, Tom ; Institut Scientifique de Recherche Agronomique - INRA > Département de Génétique Animale > Station de Génétique Quantitative et Appliquée
Gilbert, Helene
Riquet, Juliette
Gueblez, Ronan
Mercat, Marie-Jose
Bidanel, Jean-Pierre
Milan, Denis
Le Roy, Pascale
Language :
English
Title :
Detection of quantitative trait loci for reproduction and production traits in Large White and French Landrace pig populations.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Andersson L., Haley C.S., Ellegren H., Knott S.A., Johansson M., Andersson K., Andersson-Eklund L., Edfors-Lilja I., Fredholm M., Hansson I., Hakansson J., Lundström K., Genetic mapping of quantitative trait loci for growth and fatness in pigs, Science 263 (1994) 1771-1774.
Archibald A.L., Haley C.S., Brown J.F., Couperwhite S., McQueen H.A., Nicholson D., Coppieters W., Weghe A., Stratil A., Winterø A.K., Fredholm M., Larsen N.J., Nielsen V.H., Milan D., Woloszyn N., Robic A., Dalens M., Riquet J., Gellin J., Caritez J.C., Burgaud G., Ollivier L., Bidanel J.P., Vaiman M., Renard C., Geldermann H., Davoli R., Ruyter D., Verstege E.J.M., Groenen M.A.M., Davies W., Høyheim B., Keiserud A., Andersson L., Ellegren H., Johansson M., Marklund L., Miller J. R., Anderson Dear D.V., Signer E., Jeffreys A.J., Moran C., Tissier P., Muladno, Rothschild M.F., Tuggle C.K., Vaske D., Helm J., Liu H.C., Rahman A., Yu T.P., Larson R.G., Schmitz C.B., The PIGMaP consortium linkage map of the pig (Sus scrofa), Mamm. Genome 6 (1995) 157-175.
Beekmann P., Schröffel J., Moser G., Bartenschlager H., Reiner G., Geldermann H., Linkage and QTL mapping for Sus scrofa chromosome 1, J. Anim. Breed. Genet. 120 (2003) 1-10.
Bidanel J.P., Rothschild M.F., Current status of quantitative trait locus mapping in pigs, Pig News Inf. 23 (2002) 39N-53N.
Bidanel J.P., Milan D., Iannuccelli N., Amigues Y., Boscher M.Y., Bourgeois F., Caritez J.C., Gruand J., Le Roy P., Lagant H., Quintanilla R., Renard C., Gellin J., Ollivier L., Chevalet C., Detection of quantitative trait loci for growth and fatness in pigs, Genet. Sel. Evol. 33 (2001) 289-309.
Boichard D., Grohs C., Bourgeois F., Cerqueira F., Faugeras R., Neau A., Rupp R., Amigues Y., Boscher M.Y., Leveziel H., Detection of genes influencing economic traits in three French dairy cattle breeds, Genet. Sel. Evol. 35 (2003) 77-101.
Cassady J.P., Johnson R.K., Pomp D., Rohrer G.A., van Vleck L.D., Spiegel E.K., Gilson K.M., Identification of quantitative trait loci affecting reproduction in pigs, J. Anim. Sci. 79 (2001) 623-633.
Cepica S., Stratil A., Kopecny M., Blazkova P., Schroffel Jr. J., Davoli R., Fontanesi L., Reiner G., Bartenschlager H., Moser G., Geldermann H., Linkage mapping and QTL-analysis for Sus scrofa chromosome 4, J. Anim. Breed. Genet. 120 (Suppl. 1) (2003) 28-37.
de Koning D.J., Rattink A.P., Harlizius B., Groenen M.A.M., Brascamp E.W., van Arendonk J.A.M., Detection and characterization of quantitative trait loci for growth and reproduction traits in pigs, Livest. Prod. Sci. 72 (2001) 185-198.
de Koning D.J., Windsor D., Hocking P.M., Burt D.W., Law A., Haley C.S., Morris A., Vincent J., Griffin H., Quantitative trait locus detection in commercial broiler lines using candidate regions, J. Anim. Sci. 81 (2003) 1158-1165.
Elsen J.M., Mangin B., Goffinet B., Boichard D., Le Roy P., Alternative models for QTL detection in livestock. I. General information, Genet. Sel. Evol. 31 (1999) 213-224.
Evans G.J., Giffra E., Sanchez A., Kerje S., Davalos G., Vidal O., Illan S., Noguera J.L., Varona L., Velander I., Southwood O.I., de Koning D.J., Haley C.S., Plastow G.S., Andersson L., Identification of quantitative trait loci for production traits in commercial pig populations, Genetics 164 (2003) 621-627.
Freyer G., Stricker C., Kühn C., Comparison of estimated breeding values and daughter yield deviations used in segregation and linkage analyses, Czech J. Anim. Sci. 47 (2002) 247-252.
Heyen D.W., Weller J.I., Ron M., Band M., Beever J.E., Feldmesser E., Da Y., Wiggans G.R., VanRaden P.M., Lewin H.A., A genome scan for QTL influencing milk production and health traits in dairy cattle, Physiol. Genomics 1 (1999) 165-175.
Holl J.W., Cassady J.P., Pomp D., Johnson R.K., A genome scan for quantitative trait loci and imprinted regions affecting reproduction in pigs, J. Anim. Sci. 82 (2004) 3421-3429.
Hu Z.L., Dracheva S., Jang W., Maglott D., Bastiaansen J., Rothschild M.F., Reecy J.M., A QTL resource and comparison tool for pigs: PigQTLDB, Mamm. Genome 16 (2005) 792-800.
Iannuccelli N., Woloszyn N., Arhainx J., Gellin J., Milan D., GEMMA: a database to manage and automate microsatellite genotyping, in: Proceedings of the 25th International Conference on Animal Genetics, 21-25 July 1996, Tours, France, p. 88.
Jourdain C., Guéblez R., Le Hénaff G., Ajustement, à poids vif constant, des critères de contrôle en ferme chez le Large White et le Landrace Français, J. Rech. Porc. 21 (1989) 399-404.
Kim J.J., Rothschild M.F., Beever J., Rodriguez-Zas S., Dekkers J.C.M., Joint analysis of two breed cross populations in pigs to improve detection and characterization of quantitative trait loci, J. Anim. Sci. 83 (2005) 1229-1240.
King A.H., Jiang Z., Gibson J.P., Haley C.S., Archibald A.L., Mapping quantitative trait loci affecting female reproductive traits on porcine chromosome 8, Biol. Reprod. 68 (2003) 2172-2179.
Knott S.A., Elsen J.M., Haley C.S., Methods for multiple-marker mapping of quantitative trait loci in half-sib populations, Theor. Appl. Genet. 93 (1996) 71-80.
Knott S.A., Nystrom P.E., Andersson-Eklund L., Stern S., Marklund L., Andersson L., Haley C.S., Approaches to interval mapping of QTL in a multigeneration pedigree: the example of porcine chromosome 4, Anim. Genet. 33 (2002) 26-32.
Lee S.S., Chen Y., Moran C., Cepica S., Reiner G., Bartenschlager H., Moser G., Geldermann H., Linkage and QTL mapping for Sus scrofa chromosome 2, J. Anim. Breed. Genet. 120 (2003) 11-19.
Malek M., Dekkers J.C.M., Lee H.K., Baas T., Rothschild M.F., A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition, Mamm. Genome 12 (2001) 630-636.
Nagamine Y., Visscher P.M., Haley C.S., QTL detection and allelic effects for growth and fat traits in outbred pig populations, Genet. Sel. Evol. 36 (2004) 83-96.
Neumaier A., Groeneveld E., Restricted maximum likelihood of covariances in sparse linear models, Genet. Sel. Evol. 30 (1998) 3-26.
Noguera J.L., Rodriguez M.C., Varona L., Tomas A., Munoz G., Ramirez O., Barragan C., Arque M., Bidanel J.P., Amills M., Ovilo C., Sanchez A., Epistasis is a fundamental component of the genetic architecture of prolificacy in pigs, in: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, 13-18 August 2006, Belo Horizonte, Brazil, Communication 11-06.
Pierzchala M., Cieslak D., Reiner G., Bartenschlager H., Moser G., Geldermann H., Linkage and QTL mapping for Sus scrofa chromosome 17, J. Anim. Breed. Genet. 120 (2003) 132-137.
Rohrer G.A., Alexander L.J., Keele J.W., Smith T.P., Beattie C.W., A microsatellite linkage map of the porcine genome, Genetics 36 (1994) 231-245.
Rothschild M.F., Jacobson C., Vaske D., Tuggle C., Wang L., Short T., Eckardt G., Sasaki S., Vincent A., McLaren D., Southwood O., van der Steen H., Mileham A., Plastow G., The estrogen receptor locus is associated with a major gene influencing litter size in pigs, Proc. Natl. Acad. Sci. USA 93 (1996) 201-205.
Rothschild M.F., Messer L., Day A., Wales R., Short T., Southwood O., Plastow G., Investigation of the retinol-binding protein 4 (RBP4) gene as a candidate gene for increased litter size in pigs, Mamm. Genome 11 (2000) 75-77.
Schulman N.F., Viitala S.M., de Koning D.J., Virta J., Mäki-Tanila A., Vilkki J.H., Quantitative trait loci for health traits in Finnish Ayrshire cattle, J. Dairy Sci. 87 (2004) 443-449.
Thomsen H., Reinsch N., Xu N., Looft C., Gruppe S., Kühn C., Brockmann G.A., Schwerin M., Leye-Horn B., Hiendleder S., Erhardt G., Medjugorac I., Russ I., Förster M., Brenig B., Reinhardt F., Reents R., Blümel J., Averdunk G., Kalm E., Comparison of estimated breeding values, daughter yield deviations and de-regressed proofs within a whole genome scan for QTL, J. Anim. Breed. Genet. 118 (2001) 357-370.
Tribout T., Bidanel J.P., Ducos A., Garreau H., Continuous genetic evaluation of on farm and station tested pigs for production and reproduction traits in France, in: Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, 11-16 January 1998, vol. 23, University of New England, Armidale, pp. 491-494.
van der Beek S., van Arendonk J.A.M., Groen A.F., Power of two- and three-generation QTL mapping experiments in an outbred population containing fullsib or half-sib families, Theor. Appl. Genet. 91 (1995) 1115-1124.
van Wijk H.J., Dibbits B., Baron E.E., Brings A.D., Harlizius B., Groenen M.A.M., Knol E.F., Bovenhuis H., Identification of quantitative trait loci for carcass composition and pork quality traits in a commercial finishing cross, J. Anim. Sci. 84 (2006) 789-799.
VanRaden P.M., Wiggans G.R., Derivation, calculation, and use of national animal model information, J. Dairy Sci. 76 (1991) 2737-2746.
Vidal O., Noguera J.L., Amills M., Varona L., Gil M., Jiménez N., Davalos G., Folch J.M., Sanchez A., Identification of carcass and meat quality quantitative trait loci in a Landrace pig population selected for growth and leanness, J. Anim. Sci. 83 (2005) 293-300.
Vincent A.L., Evans G., Short T.H., Southwood O.I., Plastow G.S., Tuggle C.K., Rothshild M.F., The prolactin receptor gene is associated with increased litter size in pigs, in: Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, 11-16 January 1998, vol. 27, University of New England, Armidale, pp. 15-18.
Weller J.I., Kashi Y., Soller M., Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle, J. Dairy Sci. 73 (1990) 2525-2537.
Wilkie P.J., Paszek A.A., Beattie C.W., Alexander L.J., Wheeler M.B., Schook L.B., A genomic scan of porcine reproductive traits reveals possible quantitative trait loci (QTLs) for number of corpora lutea, Mamm. Genome 10 (1999) 573-578.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.