[en] The use of artificial defects is known to enhance the superconducting critical parameters of thin films. In the case of conventional superconductors, regular arrays of submicron holes (antidots) substantially increase the critical temperature T-c(H) and critical current I-c(H) for all fields. Using electrical transport measurements, we study the effect of placing an additional small antidot in the unit cell of the array. This composite antidot lattice consists of two interpenetrating antidot square arrays with a different antidot size and the same lattice period. The smaller antidots are located at the centers of the cells of the large antidots array. We show that the composite antidot lattice can trap a higher number of flux quanta per unit cell inside the antidots compared to a reference antidot film without the additional small antidots. As a consequence, the field range in which an enhanced critical current is observed is considerably expanded. Finally, the possible stable vortex lattice patterns at several matching fields are determined by molecular-dynamics simulations.
V. V. Moshchalkov, M. Baert, E. Rosseel, V. V. Metlushko, M. J. Van Bael, and Y. Bruynseraede, Physica C PHYCE6 0921-4534 10.1016/S0921-4534(97)00280-3 282, 379 (1997);
V. V. Moshchalkov, M. Baert, V. V. Metlushko, E. Rosseel, M. J. Van Bael, K. Temst, Y. Bruynseraede, and R. Jonckheere, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.57.3615 57, 3615 (1998).
V. Metlushko, U. Welp, G. W. Crabtree, R. Osgood, S. D. Bader, L. E. DeLong, Zhao Zhang, S. R. J. Brueck, B. Ilic, K. Chung, and P. J. Hesketh, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.60.R12585 60, R12585 (1999).
U. Welp, Z. L. Xiao, J. S. Jiang, V. K. Vlasko-Vlasov, S. D. Bader, G. W. Crabtree, J. Liang, H. Chik, and J. M. Xu, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.66.212507 66, 212507 (2002).
E. Rosseel, T. Puig, M. Baert, M. J. Van Bael, V. V. Moshchalkov, and Y. Bruynseraede, Physica C PHYCE6 0921-4534 10.1016/S0921-4534(97)00934-9 282, 1567 (1997).
C. Reichardt and N. Gronbech-Jensen, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85.2372 85, 2372 (2000).
S. Raedts, A. V. Silhanek, M. J. Van Bael, and V. V. Moshchalkov, Physica C PHYCE6 0921-4534 10.1016/j.physc.2003.09.095 404, 298 (2004).
T. P. Orlando and K. A. Delin, Foundations of Applied Superconductivity (Addison-Wesley, Reading, MA, 1991).
A. Wahl, V. Hardy, J. Provost, Ch. Simon, and A. Buzdin, Physica C PHYCE6 0921-4534 10.1016/0921-4534(95)00356-8 250, 163 (1995).
In addition to the perforation effect, the finite thickness δ of the film also yields an increase of the effective penetration depth up to Λ=2λ2δ, therefore giving rise to an even higher κ value. This issue has been briefly addressed in V. V. Moshchalkov, M. Baert, V. V. Metlushko, E. Rosseel, M. J. Van Bael, K. Temst, R. Jonckheere, and Y. Bruynseraede, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.54.7385 54, 7385 (1996).
M. M. Doria and G. F. Zebende, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.66.064519 66, 064519 (2002).
G. S. Mkrtchyan and V. V. Schmidt, Sov. Phys. JETP SPHJAR 0038-5646 34, 195 (1972).
H. Nordborg and V. M. Vinokur, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.62.12408 62, 12408 (2000).
B. Y. Zhu, L. Van Look, V. V. Moshchalkov, B. R. Zhao, and Z. X. Zhao, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.64.012504 64, 012504 (2001).
S. Raedts, A. V. Silhanek, M. J. Van Bael, and V. V. Moshchalkov, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.70.024509 70, 024509 (2004).