Crucial role of the amino-terminal tyrosine residue 42 and the carboxy-terminal PEST domain of IkappaBalpha in NF-kappaB activation by an oxidative stress
Piette, Jacques ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Virologie - Immunologie
Language :
English
Title :
Crucial role of the amino-terminal tyrosine residue 42 and the carboxy-terminal PEST domain of IkappaBalpha in NF-kappaB activation by an oxidative stress
Publication date :
2000
Journal title :
Journal of Immunology
ISSN :
0022-1767
eISSN :
1550-6606
Publisher :
American Association of Immunologists, Baltimore, United States - Maryland
Nakamura, H., K. Nakamura, and J. Yodoi. 1997. Redox regulation of cellular activation. Annu. Rev. Immunol. 15:351.
Dröge, W., K. Schulze-Osthoff, S. Mihm, D. Galter, H. Schenk, H.-P. Eck, S. Roth, and H. Gmünder. 1994. Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB J. 8:1131.
Dröge, W., S. Mihm, M. Bockstette, and S. Roth. 1994. Effect of reactive oxygen intermediates and antioxidants on proliferation and function of T lymphocytes. Methods Enzymol. 234:135.
Schieven, G. L., J. M. Kirihara, D. E. Meyers, J. A. Ledbetter, and F. M. Uckun. 1993. Reactive oxygen intermediates activate NFκB in a tyrosine kinase-dependent mechanism and in combination with vanadate activate the p56lck and p59fyn tyrosine kinases in lymphocytes. Blood 82:1212.
Yoshida, S., T. Katoh, T. Tetsuka, K. Uno, N. Matsui, and T. Okamoto. 1999. Involvement of thioredoxin in rheumatoid arthritis: its costimulatory roles in the TNF-α-induced production of IL-6 and IL-8 from cultured synovial fibroblasts. J. Immunol. 163:351.
Meier, B., H. H. Radeke, S. Selle, M. Younes, H. Sies, K. Resch, and G. G. Habermehl. 1989. Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumor necrosis factor-α. Biochem. J. 263:539.
Bonizzi, G., J. Piette, M. P. Merville, and V. Bours. 1997. Distinct signal transduction pathways mediate nuclear factor-κB induction by IL-1β in epithelial and lymphoid cells. J. Immunol. 159:5264.
Rossi, F. 1986. The O2--forming NADPH oxidase from phagocytes: nature, mechanism, of activation and function. Biochim. Biophys. Acta 853:65.
Morel, F., J. Doussiere, and P. V. Vignais. 1991. The superoxide-generating oxidase of phagocytic cells: physiological, molecular and pathological aspects. Eur. J. Biochem. 201:523.
Remacle, J., M. Raes, O. Toussaint, P. Renard, and G. Rao. 1995. Low levels of reactive oxygen species as modulators of cell function. Mutat. Res. 316:103.
Schreck, R., P. Rieber, and P. A. Baeuerle. 1991. Reactive oxygen species intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J. 10:2247.
Siebenlist, U., G. Franzoso, and K. Brown. 1994. Structure, regulation and function of NF-κB. Annu. Rev. Biol. 10:405.
Baeuerle, P. A., and T. Henkel. 1994. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12:141.
Miyamoto, S., and I. M. Verma. 1995. Rel/NF-κB/I κB story. Adv. Cancer Res. 66:255.
Beg, A. A., and A. S. Baldwin. 1993. The IκB proteins: multifunctional regulators of Rel/NF-κB transcription factors. Genes Dev. 7:2064.
Haskill, S., A. A. Beg, S. M. Tompkins, J. S. Morris, A. D. Yurochko, A. Sampson-Johannes, K. Mondal, P. Ralph, and A. S. Baldwin, Jr. 1991. Characterization of an immediate-early gene induced in adherent monocytes that encodes I κB-like activity. Cell 65:1281.
Mercurio, F., J. A. DiDonato, C. Rosette, and M. Karin. 1993. p105 and p98 precursor proteins play an active role in NF-κB-mediated signal transduction. Genes Dev. 7:705.
Régnier, C. H., H. Y. Song, X. Gao, D. V. Goeddel, Z. Cao, and M. Rothe. 1997. Identification and characterization of an IκB kinase. Cell 90:373.
Song, H. Y., C. Régnier, C. J. Kirschning, D. V. Goeddel, and M. Roth. 1997. Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-κB and c-Jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc. Natl. Acad. Sci. USA 94:9792.
DiDonato, J. A., D. M. Hayakawa, D. M. Rothwarf, E. Zandi, and M. A. Karin. 1997. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388:548.
Mercurio, F., H. Zhu, B. W. Murray, A. Shevchenko, B. L. Bennett, J. W. Li, D. B. Young, M. Barbosa, and B. Mann. 1997. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278:860.
Zandi, E., and M. Karin. 1999. Bridging the gap: composition, regulation, and physiological function of the IκB kinase complex. Mol. Cell. Biol. 19:4547.
Karin, M. 1999. The beginning of the end : IκB kinase (IKK) and NF-κB activation. J. Biol. Chem. 274:27339.
Schoonbroodt, S., S. Legrand-Poels, M. Best-Belpomme, and J. Piette. 1997. Activation of the NF-κB transcription factor in a T-lymphocytic cell line by hypochlorous acid. Biochem. J. 321:777.
Piret, B., S. Legrand-Poels, C. Sappey, and J. Piette. 1995. NF-κB transcription factor and human immunodeficiency virus type 1 (HIV-1) activation by methylene blue photosensitization. Eur. J. Biochem. 228:447.
Legrand-Poels, S., V. Bours, B. Piret, M. Pflaum, B. Epe, B. Rentier, and J. Piette. 1995. Transcription factor NF-κB is activated by photosensitization generating oxidative DNA damages. J. Biol. Chem. 270:6925.
Dejardin, E., G. Bonizzi, A. Bellachène, V. Castronovo, M. P. Merville, and V. Bours. 1995. Highly-expressed p100/p52 (NFKB2) sequesters other NF-κB-related proteins in the cytoplasm of human breast cancer cells. Oncogene 11: 1835.
Delic, J., P. Masdehors, S. Omura, J. M. Cosset, J. Dumont, J. C. Binet, and H. Magdelenat. 1998. The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo-and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-α-initiated apoptosis. Br. J. Cancer 77:1103.
Barkett, M., D. Xue, H. R. Horvitz, and T. D. Gilmore. 1997. Phosphorylation of IκB-α inhibits its cleavage by caspase CPP32 in vitro. J. Biol. Chem. 272:29419.
Miyamoto, S., B. J. Seufzer, and S. D. Shumway. 1998. Novel IκBα proteolytic pathway in WEHI231 immature B cells. Mol. Cell. Biol. 18:19.
Han, Y., S. Weinman, I. Boldogh, R. K. Walker, and A. R. Brasier. 1999. Tumor necrosis factor-α-inducible IαBα proteolysis mediated by cytosolic μt-calpain: a mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-κB activation. J. Biol. Chem. 274:787.
Tamai, M., K. Matsumoto, S. Omura, I. Koyama, Y. Ozawa, and K. Hanada K. 1986. In vitro and in vivo inhibition of cysteine proteinases by EST, a new analog of E-64. J. Pharmacobiodyn. 9:672.
Lin, R., P. Beauparlant, C. Maskris, S. Meloche, and J. Hiscott. 1996. Phosphorylation of IκBα in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability. Mol. Cell. Biol. 16:1401.
Zandomeni, R. O. 1989. Kinetics of inhibition by 5,6-dichloro-1-β-D-ribofurano-sylbenzimidazole on calf thymus casein kinase II. Biochem. J. 262:469.
Baeuerle, P. A., and D. Baltimore. 1996. NF-κB: ten years after. Cell 87:13.
Ghosh, S., M. J. May, and E. B. Kopp. 1998. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16: 225.
Imbert, V., R. A. Rupec, A. Livolsi, H. L. Pahl, E. B.-M. Traenckner, C. Mueller-Dieckmann, D. Farahifar, B. Rossi, P. Auberger, et al. 1996. Tyrosine phosphorylation of I κB-α activates NF-κB without proteolytic degradation of IκB-α. Cell 86:787.
Kretz-Remy, C., E. E. M. Bates, and A.-P. Arrigo. 1998. Amino acid analogs activate NF-κB through redox-dependent IκB-α degradation by the proteasome without apparent IκB-α phosphorylation: consequence on HIV-1 long terminal repeat activation. J. Biol. Chem. 273:3180.
Schouten, G. J., A. C. Vertegaal, S. T. Whiteside, A. Israel, M. Toebes, J. C. Dorsman, A. J. van der Eb, and A. Zantema. 1997. IκBα is a target for the mitogen-activated 90 kDa ribosomal S6 kinase. EMBO J. 16:3133.
Li, J.-D., W. Feng, M. Gallup, J.-H. Kim, J. Gum, Y. Kim, and C. Basbaum. 1998. Activation of NF-κB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc. Natl. Acad Sci. USA 95:5718.
Bender, K., M. Göttlicher, S. Whiteside, H. J. Rahmsdorf, and P. Herrlich. 1998. Sequential DNA damage-independent and -dependent activation of NF-κB by UV. EMBO J. 17:5171.
Li, N., and M. Karin. 1998. Ionizing radiation and short wavelength UV activate NF-κB through two distinct mechanisms. Proc. Natl. Acad. Sci. USA 95:13012.
Bonizzi, G., E. Dejardin, B. Piret, J. Piette, M. P. Merville, and V. Bours. 1996. Interleukin-1β induces nuclear factor κB in epithelial cells independently of the production of reactive oxygen intermediates. Eur. J. Biochem. 242:544.
Li, N., and M. Karin. 1999. Is NF-κB the sensor of oxidative stress? FASEB J. 13:1137.
Vile, G. F., A. Tanew-Ilitschew, and R. M. Tyrrell. 1995. Activation of NF-κB in human skin fibroblasts by the oxidative stress generated by UVA radiation. Photochem. Photobiol. 62:463.
McElhinny, J. A., S. A. Trushin, G. D. Bren, N. Chester, and C. V. Paya. 1996. Casein kinase II phosphorylates IκBα at S-283, S-289, S-293, and T-291 and is required for its degradation. Mol. Cell. Biol. 16:899.
Sun, S.-C., J. Elwood, and W. C. Green. 1996. Both amino-and carboxyl-terminal sequences within IκBα regulate its inducible degradation. Mol. Cell. Biol. 16:1058.
Beauparlant, P., R. Lin, and J. Hiscott. 1996. The role of the C-terminal domain of IκBα in protein degradation and stabilization. J. Biol. Chem. 271:10690.
Schwarz, E. M., D. van Antwerpen, and I. Verma. 1996. Constitutive phosphorylation of IκBα by casein kinase II occurs preferentially at serine 293: requirement for degradation of free IκBα. Mol. Cell. Biol. 16:3554.
van Antwerpen, D., and I. Verma. 1996. Signal-induced degradation of IκBα: association with NF-κB and the PEST sequence in IκBα are not required. Mol. Cell. Biol. 16:6037.
Heilker, R., F. Freuler, R. Pulfer, F. DiPadova, and J. Eder. 1999. All three IκB isoforms and most Rel family members are stably associated with the IκB kinase 1/2 complex. Eur. J. Biochem. 259:253.
Watabe, M., S. Nakajo, T. Yoshida, Y. Kuroiwa, and K. Nakaya. 1997. Treatment of U937 cells with bufalin induces the translocation of casein kinase 2 and modulates the activity of topoisomerase II prior to the induction of apoptosis. Cell Growth Differ. 8:871.
Kim, S. J., and C. R. Kahn. 1997. Insulin regulation of mitogen-activated protein kinase kinase (MEK), mitogen-activated protein kinase and casein kinase in the cell nucleus: a possible role in the regulation of gene expression. Biochem. J. 323:621.
Mitev, V., M. Bayat-Sarmadi, M. Lemnaouar, C. Puissant, and L. M. Houdebine. 1996. The effect of prolactin on casein kinase II. MAP kinase and PKC in rabbit mammary cells and Nb2 rat lymphoid cells. Biochem. Pharmacol. 52:1719.
Yanagawa, T., K. Yuki, H. Yoshida, S. Bannai, and T. Ishii. 1997. Phosphorylation of A170 stress protein by casein kinase II-like activity in macrophages. Biochem. Biophys. Res. Commun. 241:157.
Shumway, S. D., M. Maki, and S. Miyamoto. 1999. The PEST domain of IκBα is necessary and sufficient for in vitro degradation by μ-calpain. J. Biol. Chem. 274:30874.
Chen, F., Y. Lu, D. C. Kuhn, M. Maki, X. Shi, S.-C. Sun, and L. M. Demers. 1997. Calpain contributes to silica-induced IκBα degradation and nuclear factor-κB activation. Arch. Biochem. Biophys. 342:383.
Zhang, J., J. M. Patel, and E. R. Block. 1998. Hypoxia-specific upregulation of calpain activity and gene expression in pulmonary artery endothelial cells. Am. J. Physiol. 275:L461.
Carafoli, E., and M. Molinari. 1998. Calpain: a protease in search of a function? Biochem. Biophys. Res. Commun. 247:193.
Carafoli, E. 1997. Plasma membrane calcium pump: structure, function and relationships. Basic Res. Cardiol. 92(Suppl. 1):155.
Pahl, H. L., and P. A. Baeuerle. 1996. Control of gene expression by proteolysis Curr. Opin. Cell Biol. 8:340.
Andersson, M., J. Sjostrand, A. Petersen, and J. O. Karlsson. 1998. Calcium-dependent proteolysis in rabbit lens epithelium after oxidative stress. Ophthalmic Res. 30:157.
Miyoshi, H., K. Umeshita, M. Sakon, S. Imajoh-Ohmi, K. Fujitani, M. Gotoh, E. Oiki, J. Kambayashi, and M. Monden. 1996. Calpain activation in plasma membrane bleb formation during tert-butyl hydroperoxide-induced rat hepatocyte injury. Gastroenterology 110:1897.