Article (Scientific journals)
Pinning centers produced by magnetic microstructures
Silhanek, Alejandro; Van de Vondel, J.; Leo, A. et al.
2009In Superconductor Science and Technology, 22 (3)
Peer Reviewed verified by ORBi
 

Files


Full Text
Silhanek-SUST-2009.pdf
Publisher postprint (896.9 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
superconductivity
Abstract :
[en] We investigate the flux pinning and dynamic properties of superconducting vortices in an Al film with an array of magnetic bars deposited on top. The dimensions of each bar are chosen in such a way that they host a single magnetic domain. These micromagnets are distributed periodically in a rectangular array with 0.5 mu m separation parallel to the longest side of the bars and displaced laterally by a distance w. We show that, for w > Lambda, where Lambda is the effective field penetration depth, the pinning strength is almost independent of w whereas the critical temperature at zero field, T(c)(0), decreases as similar to w(-1). For w < Lambda the opposite behavior is observed, i.e. T(c)(0) seems to saturate to a nearly w-independent value and the transition from large to small w is accompanied by a large suppression of the critical current j(c) together with a clear change in the shape of the current-voltage characteristics. In particular, the substantial weakening of the pinning potential for w < Lambda gives rise to an unexpected flux flow response. The field evolution of this regime allows us to determine whether the magnetic bars induce vortex-antivortex pairs in the system. The present findings suggest that practical application of magnetic pinning centers are restricted to low field values.
Disciplines :
Physics
Author, co-author :
Silhanek, Alejandro  ;  Katholieke Universiteit Leuven - KUL
Van de Vondel, J.
Leo, A.
Ataklti, G. W.
Gillijns, W.
Moshchalkov, V. V.
Language :
English
Title :
Pinning centers produced by magnetic microstructures
Publication date :
2009
Journal title :
Superconductor Science and Technology
ISSN :
0953-2048
eISSN :
1361-6668
Publisher :
Institute of Physics, Bristol, United Kingdom
Volume :
22
Issue :
3
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 10 November 2011

Statistics


Number of views
62 (0 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
13
Scopus citations®
without self-citations
9
OpenCitations
 
14

Bibliography


Similar publications



Contact ORBi