ab initio modelling; quantum electron transport; gas sensing; carbon nanotube
Abstract :
[en] The sensing ability of metallic carbon nanotubes toward various gas species (NO2, NH3, CO, H2O, and CO2) is investigated via ab initio calculations and Nonequilibrium Green’s Functions technique, focusing on the salient features of the interaction between molecules and oxygenated-defective tubes. As the adsorption/desorption of molecules induces modulations on the electrical conductivity of the tube, the computation of the electron quantum conductance can be used to predict gas detection. Indeed, the analysis of the conductance curve in a small energy range around the Fermi energy reveal that oxygenated-defective nanotubes are sensitive to NO2, NH3, CO, and H2O, but not to CO2. Molecular selectivity can also be provided by the nature of the charge transfer.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Science 287, 1801 (2000). 10.1126/science.287.5459.1801 (Pubitemid 30143962)
J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, and H. J. Dai, Science 287, 622 (2000). 10.1126/science.287.5453.622 (Pubitemid 30070903)
F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nature Mater. 6, 652 (2007). 10.1038/nmat1967 (Pubitemid 47359547)
T. Zhang, S. Mubeen, N. V. Myung, and M. A. Deshusses, Nanotechnology 19, 332001 (2008). 10.1088/0957-4484/19/33/332001 (Pubitemid 352000429)
S.-H. Jhi, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 85, 1710 (2000). 10.1103/PhysRevLett.85.1710 (Pubitemid 30912225)
H. Chang, J. D. Lee, S. M. Lee, and Y. H. Lee, Appl. Phys. Lett. 79, 3863 (2001). 10.1063/1.1424069
A. R. Rocha, M. Rossi, A. Fazzio, and A. J. R. da Silva, Phys. Rev. Lett. 100, 176803 (2008). 10.1103/PhysRevLett.100.176803 (Pubitemid 351623400)
A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, Nature (London) 430, 870 (2004). 10.1038/nature02817 (Pubitemid 39119210)
K. Suenaga, H. Wakabayashi, M. Koshino, Y. Sato, K. Urita, and S. Iijima, Nat. Nanotechnol. 2, 358 (2007). 10.1038/nnano.2007.141 (Pubitemid 46878161)
C. Gómez-Navarro, P. J. De Pablo, J. Gómez-Herrero, B. Biel, F. J. Garcia-Vidal, A. Rubio, and F. Flores, Nature Mater. 4, 534 (2005). 10.1038/nmat1414 (Pubitemid 40952748)
J.-C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79, 677 (2007). 10.1103/RevModPhys.79.677 (Pubitemid 47139984)
L. Valentini, F. Mercuri, I. Armentano, C. Cantalini, S. Picozzi, L. Lozzi, S. Santucci, A. Sgamellotti, and J. M. Kenny, Chem. Phys. Lett. 387, 356 (2004). 10.1016/j.cplett.2004.02.038
A. Felten, C. Bittencourt, J.-J. Pireaux, G. Van Lier, and J.-C. Charlier, J. Appl. Phys. 98, 074308 (2005). 10.1063/1.2071455 (Pubitemid 41501995)
R. Ionescu, E. H. Espinosa, E. Sotter, E. Llobet, X. Vilanova, X. Correig, A. Felten, C. Bittencourt, G. Van Lier, J.-C. Charlier, and J. J. Pireaux, Sens. Actuators B Chem. 113, 36 (2006). 10.1016/j.snb.2005.02.020
B. R. Goldsmith, J. G. Coroneus, A. A. Kane, G. A. Weiss, and P. G. Collins, Nano Lett. 8, 189 (2008). 10.1021/nl0724079 (Pubitemid 351177799)
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 10.1103/PhysRev.136.B864
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 10.1103/PhysRev.140.A1133
J. M. Soler, E. Artacho, J. Gale, D. A. Garcia, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002). 10.1088/0953-8984/14/11/302 (Pubitemid 34288362)
S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).
A. R. Rocha, V. M. Garcia-Suárez, S. Bailey, C. Lambert, J. Ferrer, and S. Sanvito, Phys. Rev. B 73, 085414 (2006). 10.1103/PhysRevB.73. 085414 (Pubitemid 43279557)
Spin-polarized calculations have also been performed, finding that the defected-oxygenated tube and the defected-oxygenated tube with adsorbed gas molecules are not spin polarized.
A numerical atomic orbital basis set of quality double ζ plus one polarization is used for all the atoms: with an energy shift of 272 meV for C and N, and the O and H orbital basis sets optimized for H2 O [J. Junquera, Phys. Rev. B 64, 235111 (2001)]. The real-space grid cutoff is 300 Ry. 10.1103/PhysRevB.64.235111
N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991). 10.1103/PhysRevB.43.1993
P. M. Ajayan, V. Ravikumar, and J.-C. Charlier, Phys. Rev. Lett. 81, 1437 (1998). 10.1103/PhysRevLett.81.1437
H. Amara, S. Latil, V. Meunier, P. Lambin, and J.-C. Charlier, Phys. Rev. B 76, 115423 (2007). 10.1103/PhysRevB.76.115423
R. F. W. Bader, Atoms in Molecules-A Quantum Theory (Oxford University Press, Oxford, 1990).
E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman, J. Comput. Chem. 28, 899 (2007). 10.1002/jcc.20575 (Pubitemid 46491698)
M. P. Teter, M. C. Payne, and D. C. Allan, Phys. Rev. B 40, 12255 (1989). 10.1103/PhysRevB.40.12255
Note that all binding energies are calculated including the corrections to the basis set superposition error: S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970). 10.1080/00268977000101561
P. Bendt and A. Zunger, Phys. Rev. Lett. 50, 1684 (1983). 10.1103/PhysRevLett.50.1684
S. Nosé, Prog. Theor. Phys. 103, 1 (1991). 10.1143/PTPS.103.1
R. Q. Long and R. T. Yang, Ind. Eng. Chem. Res. 40, 4288 (2001). 10.1021/ie000976k
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985). 10.1103/PhysRevB.31.6207
L. Chico, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. B 54, 2600 (1996). 10.1103/PhysRevB.54.2600
H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 84, 2917 (2000). 10.1103/PhysRevLett.84.2917 (Pubitemid 40598930)
Y. W. Son, M. L. Cohen, and S. G. Louie, Nano Lett. 7, 3518 (2007). 10.1021/nl0721822 (Pubitemid 350218108)
A. R. Rocha, J. E. Padilha, A. Fazzio, and A. J. R. da Silva, Phys. Rev. B 77, 153406 (2008). 10.1103/PhysRevB.77.153406
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.