linear carbon chain; graphene nanoribbons; quantum electron transport; tunable magnetic properties; tunable electronic properties; ab initio
Abstract :
[en] First-principles and non-equilibrium Green’s function approaches are used to predict spin-polarized electronic transport in monatomic carbon chains covalently connected to graphene nanoribbons, as recently synthetized experimentally (Jin, C.; et al. Phys. Rev. Lett. 2009, 102, 205501−205504). Quantum electron conductances exhibit narrow resonant states resulting from the simultaneous presence of open conductance channels in the contact region and on the chain atoms. Odd-numbered chains, which acquire metallic or semiconducting character depending on the nature of the edge at the graphene contact, always display a net spin polarization. The combination of electrical and magnetic properties of chains and contacts results in nanodevices with intriguing spintronic properties such as the coexistence of magnetic and semiconducting behaviors.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Carbyne and Carbynoid Structures; Heimann, R. B., Evsyukov, S. E., and Kavan, L., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1999.
Polyynes: Synthesis, Properties, and Applications; Cataldo, F., Ed.; Taylor & Francis: London, 2005.
Kavan, L.; Kastner, J. Carbyne Forms of Carbon: Continuation of the Story Carbon 1994, 32, 1533-1536
Lagow, R. J.; Kampa, J. J.; Wei, H.-C.; Battle, S. L.; Genge, J. W.; Laude, D. A.; Harper, C. J.; Bau, R.; Stevens, R. C.; Haw, J. F.; Munson, E. Synthesis of Linear Acetylenic Carbon: The "sp" Carbon Allotrope Science 1995, 267, 362-367
Eisler, S.; Slepkov, A. D.; Elliott, E.; Luu, T.; McDonald, R.; Hegmann, F. A.; Tykwinski, R. R. Polyynes as a Model for Carbyne: Synthesis, Physical Properties, and Nonlinear Optical Response J. Am. Chem. Soc. 2005, 127, 2666-2676
Ravagnan, L.; Siviero, F.; Lenardi, C.; Piseri, P.; Barborini, E.; Milani, P.; Casari, C. S.; Li Bassi, A.; Bottani, C. E. Cluster-Beam Deposition and In Situ Characterization of Carbyne-Rich Carbon Films Phys. Rev. Lett. 2002, 89, 285506-285509
Ravagnan, L.; Piseri, P.; Bruzzi, M.; Miglio, S.; Bongiorno, G.; Baserga, A.; Casari, C. S.; Li Bassi, A.; Lenardi, C.; Yamaguchi, Y.; Wakabayashi, T.; Bottani, C. E.; Milani, P. Influence of Cumulenic Chains on the Vibrational and Electronic Properties of sp-sp2 Amorphous Carbon Phys. Rev. Lett. 2007, 98, 216103-216106
Meyer, J. C.; Girit, C. O.; Crommie, M. F.; Zettl, A. Imaging and Dynamics of Light Atoms and Molecules on Graphene Nature 2008, 454, 319-322
Jin, C.; Lan, H.; Peng, L.; Suenaga, K.; Iijima, S. Deriving Carbon Atomic Chains from Graphene Phys. Rev. Lett. 2009, 102, 205501-205504
Chuvilin, A.; Meyer, J. C.; Algara-Siller, G.; Kaiser, U. From Graphene Constrictions to Single Carbon Chains New J. Phys. 2009, 11, 083019
Ravagnan, L.; Manini, N.; Cinquanta, E.; Onida, G.; Sangalli, D.; Motta, C.; Devetta, M.; Bordoni, A.; Piseri, P.; Milani, P. Effect of Axial Torsion on sp Carbon Atomic Wires Phys. Rev. Lett. 2009, 102, 245502-245505
Standley, B.; Bao, W.; Zhang, H.; Bruck, J.; Lau, C. N.; Bockrath, M. Graphene-Based Atomic-Scale Switches Nano Lett. 2008, 8, 3345-3349
Li, Y.; Sinitskii, A.; Tour, J. M. Electronic Two-Terminal Bistable Graphitic Memories Nat. Mater. 2008, 7, 966-971
Yuzvinsky, T. D.; Mickelson, W.; Aloni, S.; Begtrup, G. E.; Kis, A.; Zettl, A. Shrinking a Carbon Nanotube Nano Lett. 2006, 6, 2718-2722
Khoo, K. H.; Neaton, J. B.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Negative Differential Resistance in Carbon Atomic Wire-Carbon Nanotube Junctions Nano Lett. 2008, 8, 2900-2905
Endo, M.; Muramatsu, H.; Hayashi, T.; Kim, Y.; Van Lier, G.; Charlier, J.; Terrones, H.; Terrones, M.; Dresselhaus, M. Atomic Nanotube Welders: Boron Interstitials Triggering Connections in Double-Walled Carbon Nanotubes Nano Lett. 2005, 5, 1099-1105
Fantini, C.; Cruz, E.; Jorio, A.; Terrones, M.; Terrones, H.; Van Lier, G.; Charlier, J.; Dresselhaus, M.; Saito, R.; Kim, Y.; Hayashi, T.; Muramatsu, H.; Endo, M.; Pimenta, M. Resonance Raman Study of Linear Carbon Chains Formed by the Heat Treatment of Double-Wall Carbon Nanotubes Phys. Rev. B 2006, 73, 193408
Lang, N.; Avouris, P. Oscillatory Conductance of Carbon-Atom Wires Phys. Rev. Lett. 1998, 81, 3515-3518
Lang, N.; Avouris, P. Carbon-Atom Wires: Charge-Transfer Doping, Voltage Drop, and the Effect of Distortions Phys. Rev. Lett. 2000, 84, 358-361
Larade, B.; Taylor, J.; Mehrez, H.; Guo, H. Conductance, I - V Curves, and Negative Differential Resistance of Carbon Atomic Wires Phys. Rev. B 2001, 64, 075420
Crljen, Z.; Baranovic, G. Unusual Conductance of Polyyne-Based Molecular Wires Phys. Rev. Lett. 2007, 98, 116801-116804
Tongay, S.; Senger, R.; Dag, S.; Ciraci, S. Ab Initio Electron Transport Calculations of Carbon Based String Structures Phys. Rev. Lett. 2004, 93, 136404-136407
Chen, W.; Andreev, A. V.; Bertsch, G. F. Conductance of a Single-Atom Carbon Chain with Graphene Leads Phys. Rev. B 2009, 80, 085410
Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. The SIESTA Method for Ab Initio Order-N Materials Simulation J. Phys.: Condens. Matter 2002, 14, 2745-2779
Rocha, A. R.; Garcia-Suarez, V. M.; Bailey, S.; Lambert, C.; Ferrer, J.; Sanvito, S. Spin and Molecular Electronics in Atomically Generated Orbital Landscapes Phys. Rev. B 2006, 73, 085414
Son, Y.-W.; Cohen, M. L.; Louie, S. G. Energy Gaps in Graphene Nanoribbons Phys. Rev. Lett. 2006, 97, 216803-216806
Dubois, S. M. M.; Zanolli, Z.; Declerck, X.; Charlier, J. C. Electronic Properties and Quantum Transport in Graphene-Based Nanostructures Eur. Phys. J. B 2009, 72, 1-24
Calzolari, A.; Marzari, N.; Souza, I.; Nardelli, M. Ab Initio Transport Properties of Nanostructures from Maximally Localized Wannier Functions Phys. Rev. B 2004, 69, 035108
Zanolli, Z.; Charlier, J. C. Spin Transport in Carbon Nanotubes with Magnetic Vacancy-Defects Phys. Rev. B 2010, 81, 165406
Wakabayashi, K.; Fujita, M.; Ajiki, H.; Sigrist, M. Electronic and Magnetic Properties of Nanographite Ribbons Phys. Rev. B 1999, 59, 8271-8282
Buttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized Many-Channel Conductance Formula with Application to Small Rings Phys. Rev. B 1985, 31, 6207-6215
Rocha, A. R.; Padilha, J. E.; Fazzio, A.; da Silva, A. J. R. Transport Properties of Single Vacancies in Nanotubes Phys. Rev. B 2008, 77, 153406
Troullier, N.; Martins, J. L. Efficient Pseudopotentials for Plane-Wave Calculations Phys. Rev. B 1991, 43, 1993-2006
Charlier, J.-C.; Blase, X.; Roche, S. Electronic and Transport Properties of Nanotubes Rev. Mod. Phys. 2007, 79, 677-732
Zeng, M. G.; Shen, L.; Cai, Y. Q.; Sha, Z. D.; Feng, Y. P. Perfect Spin-Filter and Spin-Valve in Carbon Atomic Chains Appl. Phys. Lett. 2010, 96, 042104
Since even and odd chains have been found to have different magnetic properties, (11) chains containing 8 and 9 atoms have been chosen to represent the two magnetic behaviors. Very short chains (such as C4 and C 3) have not been considered for the present work because, in that case, the quantum conductance is dominated by tunneling through the chain. (16) C8 and C9 have, then, been chosen after taking into account that synthesized carbon chains contain, at most, a few tens of carbon atoms. (2)
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.