First ground-based infrared solar absorption measurements of free tropospheric methanol (CH3OH): Multidecade infrared time series from Kitt Peak (31.9°N 111.6°W), trend, seasonal cycle, and comparison with previous measurements
[en] Atmospheric CH3OH (methanol) free tropospheric (2.09-14 km altitude) time
series spanning 22 years has been analyzed based on high spectral resolution infrared
solar absorption spectra of the strong ν8 band recorded from the U.S. National Solar
Observatory on Kitt Peak (latitude 31.9°N, 111.6°W, 2.09 km altitude) with a 1-m
Fourier transform spectrometer (FTS). The measurements span October 1981 to
December 2003 and are the first long time series of CH3OH measurements obtained from
the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of
three variations with season, a maximum at the beginning of July, a winter minimum, and
no statistically significant long-term trend over the measurement time span.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Rinsland, Curtis P.
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Chiou, Linda
Herbin, Hervé
Language :
English
Title :
First ground-based infrared solar absorption measurements of free tropospheric methanol (CH3OH): Multidecade infrared time series from Kitt Peak (31.9°N 111.6°W), trend, seasonal cycle, and comparison with previous measurements
Publication date :
27 February 2009
Journal title :
Journal of Geophysical Research
ISSN :
0148-0227
eISSN :
2156-2202
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
Beer, R., et al. (2008), First satellite observations of lower tropospheric ammonia and methanol, Geophys. Res. Lett., 35, L09801, doi:10.1029/2008GL033642.
Brault, J. W. (1978), Solar Fourier transform spectroscopy, in Proceedings of the JOSO Workshop, Future Solar Optical Observations, Needs and Constraints, Firenze, Italy, edited by G. Godoli, G. Noci, and A. Righin, pp. 33-52, Baccini and Chiappi, Florence, Italy.
Carpenter, L. J., A. C. Lewjs, J. R. Hopkins, K. A. Read, I. D. Longley, and M. W. Gallagher (2004), Uptake of methanol to the North Atlantic Ocean surface, Global Biogeochem. Cycles, 18, GB4027, doi:10.1029/2004GB002294.
Connor, B. J., A. Parris, J. J. Tsou, and M. P. McCormick (1995), Error analysis for the ground-based microwave measurements during STOIC, J. Geophys. Res., 100, 9283-9291.
Connor, B. J., N. B. Jones, S. W. Wood, J. G. Keys, C. P. Rinsland, and F. J. Murcray (1996), Retrieval of HC1 and HNO3 profiles from ground-based FTIR data using SFIT2, in Proceedings of the XVIII Quadrennial O3 Symposium, edited by R. D. Bojkov and G. Visconti, pp. 485-488, Univ. L'Aquila, Italy.
Dang-Nhu, M., G. Blanquet, J. Walrand, M. Allegrini, and G. Moruzzi (1990), Intensities for the CH stretch band of CH3OH at 9.7 μm, J. Mol. Spectrosc, 141, 348-350.
Drayson, D. R. (1976), Rapid calculation of the Voigt profile, J. Quant. Spectrosc. Radiat. Transfer, 16, 611-614.
Dufour, G., C. D. Boone, C. P. Rinsland, and P. F. Bernath (2006), First space-borne measurements of methanol inside aged tropical biomass burning plumes using the ACE-FTS instrument, Atmos. Chem. Phys. Disc, 6, 3945-3963.
Dufour, G. S., S. Szopa, D. A. Hauglustaine, C. D. Boone, C. P. Rinsland, and P. F. Bernath (2007), The influence of biogenic emissions on upper-tropospheric methanol as revealed from space, Atmos. Chem. Phys. Disc, 7,6119-6129.
Duncan, B. N., J. A. Logan, I. Bey, I. A. Megretskaia, R. M. Yantosca, P. C. Novelli, N. B. Jones, and C. P. Rinsland (2007), Global budget of CO, 1988-1977: Source estimates and validation with a global model, J. Geophys. Res., 112, D22301, doi: 10.1029/2007JD0084S9.
Fehsenfeld, F. C, et al. (2006), International consortium for atmospheric research on transport and transformation (ICARTT): North America to Europe-Overview of the 2004 summer field study, J. Geophys. Res., 111, D23S01, doi:10.1029/2006JD007829.
Galbally, I. E., and W. Kirstine (2002), The production of methanol by flowering plants and the global cycle of methanol, J. Atmos. Chem., 43, 195-229.
Gallery, W. O., et al., (1983), Air mass computer code for atmospheric transmittance/radiance calculation, AFGL-TR-83-0065, Air Force Geophys. Lab., Hanscom Air Force Base, Mass.
Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron (2006), Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and 10 Aerosols from Nature), Atmos. Chem. Phys., 6, 3181-3210.
Hase, F., P. Demoulin, A. J. Saval, G. C. Toon, P. Bernath, A. Goldman, J. W. Hannigan, and C. P. Rinsland (2006), An empirical line-by-line model for the infrared solar transmittance spectrum from 700 to 5000 cm-1, J. Quant. Spectrosc. Radiat. Transfer, 102, 450-463.
Heikes, B. G., et al. (2002), Atmospheric methanol budget and ocean implication, Global Biogeochem. Cycles, 16(4), 1133, doi:10.1029/ 2002GB001895.
Jacob, D. J., B. D. Field, Q. Li, D. R. Blake, J. de Gouw, C. Warneke, A. Hansel, A. Wisthaler, H. B. Singh, and A. Guenther (2005), Global budget of methanol: Constraints from atmospheric observations, J. Geophys. Res., 110, D08303, doi:10.1029/2004JD005172.
Karl, T., A. Guenther, C. Spirig, A. Hansel, and R. Fall (2003), Seasonal variations of biogenic VOC emissions above a mixed hardwood forest in northern Michigan, Geophys. Res. Lett., 23(23), 2186, doi:10.1029/2003GL018432.
Liang, Q., et al. (2007), Summertime influence of Asian pollution in the fee troposphere over North America, J. Geophys. Res., 112, D12S11, doi:10.1029/2006JD007919.
Madronich, S., and J. G. Calvert (1990), Permutation reactions of organic peroxy radicals in the troposphere, J. Geophys. Res., 95, 5697-5715.
Meier, A., A. Goldman, P. S. Manning, T. M. Stephen, P. C. Rinsland, N. B. Jones, and S. W. Wood (2004), Improvements to air mass calculations from ground-based infrared measurements, J. Quant. Spectrosc. Radiat. Transfer, 83, 109-113.
Millet, D. B., et al. (2006), Formaldehyde distribution over North America: Implications for satellite retrievals of formaldehyde columns and isoprene emission, J. Geophys. Res., 111., D24S02, doi:10.1029/ 2005JD006853.
Millet, D. B., et al. (2008), New constraints on terrestrial and oceanic sources of atmospheric methanol, Atmos. Chem. Phys. Disc, 8, 7609-7655.
Parrish, A., B. J. Connor, J. J. Tsou, I. S. McDermid, and W. P. Chu (1992), Ground-based microwave monitoring of stratospheric ozone, J. Geophys. Res., 97,2541-2546.
Paton-Walsh, C, S. R. Wilson, N. B. Jones, and D. W. T. Griffith (2008), Measurement of methanol emissions from Australian wildfires by ground-based solar Fourier transform spectroscopy, Geophys. Res. Lett., 35, L08810, doi:10.1029/2007GL032951.
Pougatchev, N. S., and C. P. Rinsland (1995), Spectroscopic study of the seasonal variation of carbon monoxide vertical distribution above Kitt Peak,J. Geophys. Res., 100, 1409-1416.
Rinsland, C. P., et al. (1998), Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane, J. Geophys. Res., 103, 28,197-28,217.
Rinsland, C. P., E. Mahieu, R. Zander, P. Demoulin, J. Forrer, and S. Reimann (2000a), Free Tropospheric CO, C2H6 and HCN above Central Europe: Recent measurements from the Jungfraujoch station including the detection of elevated columns during 1998, J. Geophys. Res., 105, 24,235-24,249.
Rinsland, C. P., et al. (2000b), Correlation relationships of stratospheric molecular constituents from high spectral resolution, ground-based infrared solar absorption spectra, J. Geophys. Res., 105, 14,637-14,652.
Rodgers, C. D. (1990), Characterization and error analysis of profiles retrieved from remote sounding measurements, J. Geophys. Res., 95, 5587-5595.
Rothman, L. S., et al. (2005), The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 96, 139-204.
Schade, G. W., and A. H. Goldstein (2001), Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation, J. Geophys. Res., 106,3111-3123.
Schade, G. W., and A. H. Goldstein (2006), Seasonal measurements of acetone and methanol: Abundances and implications for atmospheric budgets, Global Biogeochem. Cycles, 20, GB1011, doi:10.1029/ 2005GB002566.
Singh, H. B., Y. Chen, A. Staudt, D. Jacob, D. Blake, D. Heikes, and J. Snow (2001), Evidence from the South Pacific troposphere for large global abundances and sources of oxygenated organic compounds, Nature, 410, 1078-1081.
Singh, H. B., W. H. Brune, J. H. Crawford, D. J. Jacob, and P. B. Russell (2006), Overview of the summer 2004 intercontinental chemical transport experiment-North America INTEX-A), J. Geophys. Res., 111, D24S01, doi: 10.1029/2006JD007905.
Solomon, S. J., T. Custer, G. Schade, A. P. Soares Dias, and J. Burrows (2005), Atmospheric methanol measurement using selective catalytic methanol to formaldehyde conversion, Atmos. Chem. Phys., 5, 2787-2796.
Tie, X., A. Guenther, and E. Holland (2003), Biogenic methanol and its impacts on tropospheric oxidants, Geophys. Res. Lett., 30(17), 1881, doi:10.1029/2003GL017167.
Tyndall, G. S., R. A. Cox, C. Granier, R. Lesclaux, G. K. Moortgat, G. K. Pilling, A. R. Ravishankara, and T. J. Wallington (2001), Atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res., 106, 12,157-12,182.
von Kuhlmann, R., M. G. Lawrence, M. G. Crutzen, and P. J. Rasch (2003a), Model evaluation of ozone-related species, J. Geophys. Res., 108(D9), 4729, doi:10.1029/2002JD002893.
von Kuhlmann, R., M. G. Lawrence, M. G. Crutzen, and P. J. Rasch (2003b), A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results, J. Geophys. Res., 108(D9), 4294, doi:10.1029/2002JD002893.
Warneke, C, et al. (2004), Comparison of daytime and nighttime oxidation of biogenic and anthropogenic VOCs along the New England coast in summer during New England air quality study 2002, J. Geophys. Res., 109, D10309, doi: 10.1029/2003JD004424.
Xu, T. L., R. M. Lees, P. Wang, L. R. Brown, I. Kleiner, and J. W. C. Johns (2004), New assignments, line intensities, and HITRAN database for CH 3OH at 10 μm, J. Mol. Spectrosc, 228, 453-470.