[en] Electron spin resonance spectroscopy (ESR) is a highly efficient technique able to access a wide range of information about the unfavourable effects caused by a chemical or a drug.
ESR in spin labelling fits well in with the study of membranes and particularly with the changes in lipid bilayer organisation induced by drug. Our team previously developed a way to quantify the effective lipid bilayer microviscosity of cell membranes and consequently put in evidence the fluidity effect of the propofol. Recently, the importance of lipid raft domains has been shown due to their important role as a platform for signal transduction and protein sorting. We propose to highlight the effect of the Randomly methylated beta cyclodextrin (Rameb) on these domains on membrane model (liposomes) as well as on colon carcinoma cell line (HCT-116).
Futhermore, ESR in spin trapping is used in order to identify and quantify the generation of Reactive Oxygen Species (ROS) in cells. An ESR study on human colon carcinoma cell line has highlighted the cytotoxicity of the photosensitizer pyrophephorbide-a methyl ester. Using an intracellular located spin trap (4-pyridyl 1-oxide-N-tert-butylnitrone, POBN), it has been shown that the photoexcitation of the dye is able to generate superoxide anions, hydroxyl radicals and singlet oxygen.
Moreover, ESR is one of the most sensitive method for measuring cellular oxygen consumption. Our team has studied the alterations of oxygen respiratory in human tubular renal cells treated with an endotoxin (lipopolysaccharide, LPS). The incubation of HK-2 cells with LPS elicited a decreased in oxygen consumption suggesting a down-regulation of the cells metabolism.