Magnetic susceptibility applied as an age-depth-climate relative dating technique using sediments from Scladina Cave, a Late Pleistocene cave site in Belgium
Ellwood, B. B.; Harrold, F. B.; Benoist, S. L.et al.
2004 • In Journal of Archaeological Science, 31 (3), p. 283-293
[en] Here we demonstrate that magnetic susceptibility (MS) data from Scladina Cave, Belgium, provide a time-depth-climate relationship that is correlated to the marine oxygen isotopic record and thus yields a high-resolution relative dating method for sediments recovered from many archaeological sites. This methodology will help resolve one of the major problems facing archaeologists, namely the difficulty of acquiring absolute dates with reasonable precision for the period from 40,000 to 400,000 years or so. The problem is that dating techniques applicable to most materials within this age range are subject to significant errors. Relative dating techniques.. such as magnetic secular variation or stable isotope methods, offer the potential to improve this precision. but both methods suffer from problems that make broad application to many sites impossible. However, for most archaeoloaical cave sites, MS measurements of cave sediments offers the potential for intra-site correlation and paleoclimate estimation. This is possible in protected cave environments because the MS of cave sediments results from climate processes active outside caves. which cause variations in magnetic properties of the sediments that ultimately accumulate inside caves. Once deposited, these materials are often preserved and their stratigraphy provides a time-depth-climate signal that can be identified. Therefore MS data can be used as an independent methodology, alongside conventional methods such as sedimentology and palynology, for relative age dates, and correlation within and between sites by tracing evidence of paleoclimatic change. This correlation has been used to infer an age of 90,000 +/- 7000 years for Neanderthal skeletal remains recovered from Scladina Cave, an important Middle Paleolithic archaeological site in Belgium. (C) 2003 Elsevier Ltd. All rights reserved.
Otte, Marcel ; Université de Liège - ULiège > Département des sciences historiques > Archéologie préhistorique
Bonjean, D.
Long, G. J.
Shahin, A. M.
Hermann, Raphaël ; Université de Liège - ULiège > Département de physique > Département de physique
Grandjean, Fernande ; Université de Liège - ULiège > Département de physique > Département de physique
Language :
English
Title :
Magnetic susceptibility applied as an age-depth-climate relative dating technique using sediments from Scladina Cave, a Late Pleistocene cave site in Belgium
S.K. Banerjee, Sediment reveals early Holocene climate change in China. EOS, Transactions, American Geophysical Union 77 (1996) 3 and 5.
S. Bottema. The prehistoric environment of Greece: A review of the palynological record, in: P.N. Kardulias (Ed.), Beyond the Site: Regional Studies in the Aegean Area. University Press of America, Lanham, NY. 1994, pp. 45-68.
D. Bonjean, L'Archéologie, in: M. Otte, M. Patou-Mathis, D. Boolean (Eds.), Recherches aux Grottes de Sclayn 2, ERAUL 79, Liège, 1998, pp. 45-57.
B.C. Deaton, W.L. Balsam, Visible spectroscopy-a rapid method for determining hematite and goethite concentration in geological materials. J. Sedimentary Petrology 61 (1991) 628-632.
B.B. Ellwood, B. Burkart, Test of hydrocarbon-induced magnetic patterns in soils: the sanitary landfill as laboratory, in: D. Schumacher, M.A. Abrams (Eds.), Hydrocarbon Migration and its Near-Surface Expression: AAPG Memoir 66. Tulsa. Oklahoma, 1996, pp, 91-98.
B.B. Ellwood, F.B. Harrold, S.L. Benoist, L.G. Straus, M. Gonzalez-Morales, K. Petruso, N.F. Bicho, Z. Zilhaào, N. Soler, Paleoclimate and intersite correlations from Late Pleistocene/Holocene cave sites: results from Southern Europe. Geoarchaeology 16 (2001) 433-463.
B.B. Ellwood, F.B. Harrold, A.E. Marks, Site identification and correlation using geoarchaeological methods at the Cabeço do Porto Marinho (CPM) locality, Rio Maior, Portugal, Journal of Archaeological Science 21 (1994) 779-784.
B.B. Ellwood, D.E. Peter, W. Balsam, J. Schieber, Magnetic and geochemical variations as indicators of paleoclimate and archaeological site evolution: examples from 41TR68, Fort Worth. Texas. Journal of Archaeological Science 22 (1995) 409-415.
B.B. Ellwood, K.M. Petruso, F.B. Harrold. The utility of magnetic susceptibility for detecting paleoclimatic trends and as a stratigraphic correlation tool: all example from Konispol cave sediments, SW Albania. Journal of Field Archaeology 23 (1996) 263-271.
B.B. Ellwood, K.M. Petruso, F.B. Harrold, J. Schuldenrein, High-resolution paleoclimatic trends for the Holocene identified using magnetic susceptibility data from archaeological excavations in caves, Journal of Archaeological Sciences 24 (1997) 569-573.
B.B. Ellwood, J. Zilhaào, F.B. Harrold, W. Balsam, B. Burkart, G.J. Long, A. Debénath, A. Bouzouggar, Identification of the last glacial maximum in the Upper Paleolithic of Portugal using magnetic susceptibility measurements of Caldeiraào Cave sediments, Geoarchaeology 13 (1998) 55-71.
W.R. Farrand, Discontinuity in the startigraphic record: snapshots from Franchthi Cave, in: P. Goldberg, D.T. Nas, M.D. Petraglia (Eds.), Formation Processes in Archaeological Context: Monographs in World Archaeology, No. 17, Prehistory Press, Madison, Wisconsin, 1993, pp. 85-96.
J. Guiot, J.L. de Beaulieu, R. Cheddadi, F. David, P. Ponel, M. Reille, The climate in Western Europe during the last glacial/interglacial cycle derived from pollen and insect remains, Palaeography, Palaeoclimatology, Palaeoecology 103 (1993) 73-93.
J. Guiot, A. Pons, J.L. de Beaulieu, M. Reille, A 140,000-year continental climate reconstruction from two European pollen records, Nature 23 (1989) 309-313.
F. Heller, M.E. Evans, Loess Magnetism, Reviews of Geophysics 33 (1995) 211-240.
J. Imbrie, J.D. Hays, D.G. Martinson, A. McIntyre, A.C. Mix, J.J. Morley, N.G. Pisias, W.L. Prell, N.J. Shackleton, The orbital theory of Pleistocene climate: support from a revised chronology ofthe marine delta 18O record, in: A.L. Berger, J. Imbrie, J. Hays, G. Kukla. B. Saltzman (Eds.), Milankovitch and Climate, Part I, Reidel, Boston, 1984, pp. 269-305.
W.L. Lindsay, Solubility and redox equilibria of iron compounds in soils, in: J.W. Stucki, B.A. Goodman, U. Schwertmann (Eds.), Iron in Soils and Clay Minerals, D. Reidel Publishing Co, Dordrecht, 1988, pp. 31-62.
B.A. Maher, Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications, Palaeogeography, Paleoclimology, Palaeoecology 137 (1998) 25-54.
D.G. Martinson, N.G. Pisias, J.D. Hays, T.C. Imbrie, N.J. Shackleton, Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy, Quaternary Research 27 (1987) 1-29.
S. Mfrup, J.A. Dumesic, H. Topsfe, Magnetic microcrystals, in: R.L. Cohen (Ed.), Applications of Mössbauer Spectroscopy II, Academic Press, New York, 1980, pp. 1-53.
J.M. Mitchell Jr, An overview of climatic variability and its causal mechanisms, Quaternary Research 6 (1976) 481-493.
R. Mössbauer, Kernresonanza bsorption von gammastrahlung in Ir191, Naturwissenschaften 45 (1958) 538-539.
C.E. Mullens, Magnetic susceptibility of the soil and its significance in soil science-a review, Journal of Soil Science 28 (1977) 223-246.
E. Murad, J.H. Johnston, Iron oxides and oxyhydroxides, in: G.J. Long (Ed.), Mössbauer Spectroscopy Applied to Inorganic Chemistry 2, Plenum Press, New York, 1987, pp. 507-582.
E. Murad, U. Schwertmann, The influence of aluminum substitution and crystallinity on the Mössbauer-spectra of goethite, Clay Minerals 18 (1983) 301-312.
S.R. O'Brien, P.A. Mayewski, L.D. Meeker, D.A. Meese, M.S. Twickler, S.I. Whitlow, Complexity of Holocene climate as reconstructed from a Greenland ice core, Science 270 (1995) 1962-1964.
M. Otte, M. Patou-Mathis, D. Bonjean (Eds.), Recherches aux grottes de Sclayn, Volume 2, L'Archèologie, ERAUL, Liège, 1998, pp. 79.
M. Otte. M. Toussaint, D. Bojean, Déouverte de restes humains immatures dans les niveaux moustériens de la grotte Scladina à Andenne (Belgique), Bull. et Mém. de la Société d'Anthropologie de Paris 5 (1993) 327-332.
T.G. Quinn, G.J. Long, C.G. Benson, S. Mann, R.J.P. Williams, Influence of silicon and phosphorus on structural and magnetic properties of synthetic goethite and related oxides, Clay Clay Minerals 36 (1988) 165-175.
W.J. Rink, H.P. Schwarcz, H.K. Lee, V. Cabrera Valdes, F. Bernaldo de Quiros, M. Hoyos, ESR dating of Mousterian levels at El Castillo Cave. Cantabria, Spain, J Archaeological Science 23 (1997) 593-600.
H. Stanjek, J.W.E. Fassbinder, H. Vali, H. Wägele, W. Graf, Evidence of biogenic greigite (ferrimagnetic Fe3S4) in soil, European Journal of Soil Science 45 (1994) 97-103.
L.G. Straus, The Upper Paleolithic of Europe: an overview, Evolutionary Anthropology 4 (1995) 4-16.
M. Toussaint, M. Otte, D. Bonjean, H. Bocherens, C. Falgueres, Y. Yokoyama, Les restes humains néandertaliens immatures de la couche 4A de la grotte Scladina (Andenne, Belgique), Académie des Sciences de Paris 326 (1998) 737-742.
E. Tziperman, H. Gildor, On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times, Paleoceanography 18 (1) (2003) 1001, doi: 10.1029/2001PA000627.
J.C. Woodward, G.N. Bailey, Sediment sources and terminal Pleistocene geomorphological processes recorded in rockshelter sequences in North-west Greece, in: I.D.L. Foster (Ed.), Tracers in Geomorphology, John Wiley & Sons, Ltd, London, 2000, pp.521-550.
J.C. Woodward, J. Lewin, M.G. Macklin, Alluvial sediment sources in a glaciated catchment: the Voidomatis Basin. northwest Greece, Earth Surface Processes and Landforms 17 (1992) 205-216.